class: center, middle, inverse, title-slide .title[ # PPOL 670-01: Missing Data/Relational Data ] .subtitle[ ## Week 12 ] .author[ ### Alexander Podkul, PhD ] .date[ ### Spring 2023 ] --- ## Tonight's Outline .pull-left[ - The Next Few Weeks - Final Project Presentations - Missing Data - Relational Databases - __Break__ - Coding Exercises ] .pull-right[ <img src="sticker.png" width="80%" style="display: block; margin: auto;" /> ] --- ## The Next Few Weeks __Tonight__ (April 12): - Problem Set #5 assigned __Next Week__ (April 19): - Problem Set #5 due - Assorted R packages(!) - Advanced web scraping (time permitting) __Last Week (ðŸ˜)__ (April 26): - Presentation week __Later Last Week__ (April 28): - Peer comments submitted __Later__ (May 10): - Final project due --- class: inverse, center, middle ## Final Project Presentations --- ## Final Project Presentations For final project presentations, I want to be sure to cover two things this evening: 1. Expectations about the presentation itself 2. Tutorial on make slides in R Markdown (it's easy!) --- ## Final Project Presentations: Expectations __The Minimum__: Presenting a slide deck (in either .html or .pdf format) for about 7-8 minutes that introduces the project's research question (with any additional context), data source, modeling approach, and any preliminary findings. -- __Optional additional areas to include__: - providing details on measurement - any limitations that your work might face - any clever data wrangling or cleaning that needed to be done -- __Other tips and expectations__: 1. Does not need to show a "complete" report ("rough draft") 2. Highlighting the data, any models, and _interpretation_ 3. No expectation of including any code 4. Visualizations `\(\geq\)` tables 5. Please keep to 7-8 minutes --- ## Final Project Presentations: Tutorial on Slidemaking (Tutorial in .rmd format downloadable on the course site.) In R Studio File --> New File --> R Markdown... Select "Presentation" Select either .html or .pdf option --- class: inverse, center, middle ## Missing Data --- ## Missing Data To start with an example: imagine we are using the familiar "life expectancy" data set. We can estimate a decision tree using our data such that: <img src="Week12_files/figure-html/unnamed-chunk-2-1.png" style="display: block; margin: auto;" /> --- ## Missing Data But imagine a scenario where we don't have all of our data collected. In particular, for some reason, we are only able to collect 30% of our data in Africa. When we re-estimate the model (using the same hyperparameters), it looks like: <img src="Week12_files/figure-html/unnamed-chunk-3-1.png" style="display: block; margin: auto;" /> --- ## Missing Data .pull-left[ __Missing data__ problems are one of the issues that are far more likely to happen in the real world than in classroom-ready data sets. Broadly, "missing data" can refer to unit nonresponse or item nonresponse; tonight we'll be focusing on the latter. Whether or not we are actively considering missing data in our approaches, R (or whatever language we are using) is going to make decisions related to how to handle missing data. ] .pull-right[ <table class=" lightable-paper" style='font-family: "Arial Narrow", arial, helvetica, sans-serif; margin-left: auto; margin-right: auto;'> <thead> <tr> <th style="text-align:right;"> ID </th> <th style="text-align:left;"> X </th> <th style="text-align:right;"> Y </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:left;"> NA </td> <td style="text-align:right;"> 4 </td> </tr> <tr> <td style="text-align:right;"> 2 </td> <td style="text-align:left;"> Group B </td> <td style="text-align:right;"> 2 </td> </tr> <tr> <td style="text-align:right;"> 3 </td> <td style="text-align:left;"> Group A </td> <td style="text-align:right;"> 1 </td> </tr> <tr> <td style="text-align:right;"> 4 </td> <td style="text-align:left;"> Group A </td> <td style="text-align:right;"> 2 </td> </tr> <tr> <td style="text-align:right;"> 5 </td> <td style="text-align:left;"> Group B </td> <td style="text-align:right;"> 4 </td> </tr> <tr> <td style="text-align:right;"> 6 </td> <td style="text-align:left;"> Group B </td> <td style="text-align:right;"> 4 </td> </tr> <tr> <td style="text-align:right;"> 7 </td> <td style="text-align:left;"> NA </td> <td style="text-align:right;"> 3 </td> </tr> <tr> <td style="text-align:right;"> 8 </td> <td style="text-align:left;"> Group A </td> <td style="text-align:right;"> NA </td> </tr> </tbody> </table> ] --- ## Missing Data For example, if we don't consider missing data and just move forward you'll notice there are some decisions that our models will make by default: -- ```r mod <- lm(Y~X, data = d) summary(mod) ``` -- ``` ## ## Call: ## lm(formula = Y ~ X, data = d) ## ## Residuals: ## 2 3 4 5 6 ## -1.3333 -0.5000 0.5000 0.6667 0.6667 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 1.5000 0.7265 2.065 0.131 ## XGroup B 1.8333 0.9379 1.955 0.146 ## ## Residual standard error: 1.027 on 3 degrees of freedom ## (3 observations deleted due to missingness) ## Multiple R-squared: 0.5602, Adjusted R-squared: 0.4136 ## F-statistic: 3.821 on 1 and 3 DF, p-value: 0.1456 ``` --- ## Missing Data: Types Before we discuss various solutions to working with missing data, we can first break down the issue off missing data to three types: 1. missing completely at random (MCAR) 2. missing at random (MAR) 3. missing not at random (MNAR) --- ## Missing Data: Types Before we discuss various solutions to working with missing data, we can first break down the issue off missing data to three types: 1. __missing completely at random (MCAR)__ 2. missing at random (MAR) 3. missing not at random (MNAR) MCAR refers to the idea that the mechanism responsible for missing data is _completely random_, that is not related to other features of our data Example: if we produced a random of countries to include in our analysis --- ## Missing Data: Types Before we discuss various solutions to working with missing data, we can first break down the issue off missing data to three types: 1. missing completely at random (MCAR) 2. __missing at random (MAR)__ 3. missing not at random (MNAR) MAR refers to the idea that the mechanism responsible for missing data is related to other features within our data Example: if literacy scores are missing but related to socioeconomic status --- ## Missing Data: Types Before we discuss various solutions to working with missing data, we can first break down the issue off missing data to three types: 1. missing completely at random (MCAR) 2. missing at random (MAR) 3. __missing not at random (MNAR)__ MNAR refers to the idea that the mechanism responsible for missing data is related specifically to what we are aiming to measure Example: if a person fails to show up to a workplace drug test because they recently did drugs --- ## Missing Data: Types To borrow an example from Richard McElreath: <img src="dog.png" width="567" height="80%" style="display: block; margin: auto;" /> --- ## Missing Data: Solutions <table class=" lightable-paper" style='font-family: "Arial Narrow", arial, helvetica, sans-serif; margin-left: auto; margin-right: auto;'> <thead> <tr> <th style="text-align:left;"> Type </th> <th style="text-align:left;"> Issue </th> <th style="text-align:left;"> Possible Solutions </th> </tr> </thead> <tbody> <tr grouplength="2"><td colspan="3" style="border-bottom: 1px solid;"><strong>Ignorable</strong></td></tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> MCAR </td> <td style="text-align:left;"> Loss of Power </td> <td style="text-align:left;"> Listwise Deletion </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> MAR </td> <td style="text-align:left;"> Need to account for cause of missingness </td> <td style="text-align:left;"> Imputation </td> </tr> <tr grouplength="1"><td colspan="3" style="border-bottom: 1px solid;"><strong>Non-ignorable</strong></td></tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> MNAR </td> <td style="text-align:left;"> Produces biased parameter estimates </td> <td style="text-align:left;"> Improve dataset </td> </tr> </tbody> </table> --- ## Missing Data: Actual Solutions How can we fix missing data? 1. __Go find the missing data__ 2. Everything else... There are many cases where we can't go back and fill in missing data points. For example, if we consider survey datasets, it's nearly impossible for us to recontact the respondent and get a full answer to the question she or he left blank and even if we did we would have to assume that her or his answer would be the same as it would have been when the survey first fielded. But in other settings, we might be able to fill in missing data, especially after better understanding the core reasons for missingness. For example, in the state dataset for the data project, there may have been reasons a researcher was unable to find historical data which may be available. By understanding why the data is missing you can better assess whether that data can be added to the data file. (though, as always, it's important to note how and when you're amending established datasets, if it's not an original dataset.) --- ## Missing Data: Simple Solutions Simple missing data solutions: - __List-wise Deletion__ - remove incomplete cases - Mean/Median Imputation - Group Imputation ``` ## ID X Y ## 1 1 <NA> 4 ## 2 2 Group B 2 ## 3 3 Group A 1 ## 4 4 Group A 2 ## 5 5 Group B 4 ## 6 6 Group B 4 ## 7 7 <NA> 3 ## 8 8 Group A NA ``` --- ## Missing Data: Simple Solutions Simple missing data solutions: - __List-wise Deletion__ - remove incomplete cases - Mean/Median Imputation - Group Imputation -- ```r na.omit(d) ``` -- ``` ## ID X Y ## 2 2 Group B 2 ## 3 3 Group A 1 ## 4 4 Group A 2 ## 5 5 Group B 4 ## 6 6 Group B 4 ``` --- ## Missing Data: Simple Solutions Simple missing data solutions: - __List-wise Deletion__ - remove incomplete cases - Mean/Median Imputation - Group Imputation ```r d %>% tidyr::drop_na() ``` -- ``` ## ID X Y ## 1 2 Group B 2 ## 2 3 Group A 1 ## 3 4 Group A 2 ## 4 5 Group B 4 ## 5 6 Group B 4 ``` --- ## Missing Data: Simple Solutions Simple missing data solutions: - __List-wise Deletion__ - remove incomplete cases - Mean/Median Imputation - Group Imputation ```r d %>% tidyr::drop_na(Y) ``` -- ``` ## ID X Y ## 1 1 <NA> 4 ## 2 2 Group B 2 ## 3 3 Group A 1 ## 4 4 Group A 2 ## 5 5 Group B 4 ## 6 6 Group B 4 ## 7 7 <NA> 3 ``` --- ## Missing Data: Simple Solutions Simple missing data solutions: - List-wise Deletion - remove incomplete cases - __Mean/Median Imputation__ - replace missing cases with measure of central tendency - Group Imputation -- ```r d %>% mutate(Y = ifelse(is.na(Y), median(Y, na.rm = T), Y) ) ``` -- ``` ## ID X Y ## 1 1 <NA> 4 ## 2 2 Group B 2 ## 3 3 Group A 1 ## 4 4 Group A 2 ## 5 5 Group B 4 ## 6 6 Group B 4 ## 7 7 <NA> 3 ## 8 8 Group A 3 ``` --- ## Missing Data: Simple Solutions Simple missing data solutions: - List-wise Deletion - remove incomplete cases - __Mean/Median Imputation__ - replace missing cases with measure of central tendency - Group Imputation ```r library(Hmisc) impute(d$Y, fun = median) ``` -- ``` ## 1 2 3 4 5 6 7 8 ## 4 2 1 2 4 4 3 3* ``` --- ## Missing Data: Simple Solutions Simple missing data solutions: - List-wise Deletion - remove incomplete cases - Mean/Median Imputation - replace missing cases with measure of central tendency - __Group Imputation__ - replace missing cases with measure of central tendency (group, year, etc.) -- ```r d %>% group_by(X) %>% mutate(Y = ifelse(is.na(Y),median(Y, na.rm = T), Y)) ``` -- ``` ## # A tibble: 8 × 3 ## # Groups: X [3] ## ID X Y ## <int> <chr> <dbl> ## 1 1 <NA> 4 ## 2 2 Group B 2 ## 3 3 Group A 1 ## 4 4 Group A 2 ## 5 5 Group B 4 ## 6 6 Group B 4 ## 7 7 <NA> 3 ## 8 8 Group A 1.5 ``` --- ## Missing Data: Simple Solutions Simple missing data solutions: - List-wise Deletion - remove incomplete cases - Mean/Median Imputation - replace missing cases with measure of central tendency - __Group Imputation__ - replace missing cases with measure of central tendency (group, year, etc.) ```r d %>% tidyr::fill(Y, .direction = 'down') ``` -- ``` ## ID X Y ## 1 1 <NA> 4 ## 2 2 Group B 2 ## 3 3 Group A 1 ## 4 4 Group A 2 ## 5 5 Group B 4 ## 6 6 Group B 4 ## 7 7 <NA> 3 ## 8 8 Group A 3 ``` --- ## Missing Data: Regression-Based "Solution" A neat approach that we can use is to use regression on available data in order to make "out of sample predictions" on missing data. -- .pull-left[ <table class=" lightable-paper" style='font-family: "Arial Narrow", arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;'> <thead> <tr> <th style="text-align:right;"> X </th> <th style="text-align:left;"> Y </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:left;"> 9 </td> </tr> <tr> <td style="text-align:right;"> 4 </td> <td style="text-align:left;"> 3 </td> </tr> <tr> <td style="text-align:right;"> 2 </td> <td style="text-align:left;"> </td> </tr> <tr> <td style="text-align:right;"> 2 </td> <td style="text-align:left;"> 6 </td> </tr> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:left;"> 9 </td> </tr> <tr> <td style="text-align:right;"> 10 </td> <td style="text-align:left;"> 8 </td> </tr> </tbody> </table> ] .pull-right[ `$$Y = \beta_0 + \beta_1X + u$$` `$$Y = 7.3 + -0.09X + u$$` `$$\hat{Y} = 7.3 + -0.09(2) = 7.12$$` ] --- ### Regression Based Imputation: Example <img src="Week12_files/figure-html/unnamed-chunk-26-1.png" style="display: block; margin: auto;" /> --- ### Regression Based Imputation: Example <img src="Week12_files/figure-html/unnamed-chunk-27-1.png" style="display: block; margin: auto;" /> --- ### Regression Based Imputation Regression-based imputation is a straightforward way to handle MCAR and MAR data, especially when the factors influencing MAR are included in the model. __The advantage?:__ We're able to preserve the general relationship between the variables that we care about and can control for factors that are missing at random __The disadvantage?:__ We may be _overly confident_ in the relationship between those variables as we are making the relationship stronger by using imputed values (e.g. think about the effects on the standard error in the previous example) --- ### Regression Based Imputation: Example <img src="Week12_files/figure-html/unnamed-chunk-28-1.png" style="display: block; margin: auto;" /> --- ## Missing Data: More Complicated Solutions Beyond these basic imputation methods, we can also use some more complicated imputation tools which will better leverage the available data in order to make predictions about what is missing in our ignorable data. -- We'll cover: - Using KNN for imputation - Using Random Forest for imputation - Using MICE for creating and summarizing multiple imputations -- But before we go forward, do we need to consider just our predictors or also our response variable? --- ### KNN The __KNN__ approach to missing data builds on how we've worked with KNN in the past. For every observation in our data set that needs to be _imputed_ it identifies the _k_ closest (using some distance, e.g. Euclidean) observations. 1. Identify hyper-parameter `\(K\)` 2. For each missing data point find prediction (classification or regression) from `\(K\)` nearest neighbors 3. Repeat for each missing data point --- ### KNN: Example Original data: <table class=" lightable-paper" style='font-family: "Arial Narrow", arial, helvetica, sans-serif; margin-left: auto; margin-right: auto;'> <thead> <tr> <th style="text-align:right;"> Population </th> <th style="text-align:left;"> Continent </th> <th style="text-align:right;"> GDP_per_capita </th> <th style="text-align:right;"> life_expectancy </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 34414000 </td> <td style="text-align:left;"> Asia </td> <td style="text-align:right;"> 1928 </td> <td style="text-align:right;"> 63.377 </td> </tr> <tr> <td style="text-align:right;"> 2891000 </td> <td style="text-align:left;"> Europe </td> <td style="text-align:right;"> 10947 </td> <td style="text-align:right;"> 78.025 </td> </tr> <tr> <td style="text-align:right;"> 39728000 </td> <td style="text-align:left;"> Africa </td> <td style="text-align:right;"> 13024 </td> <td style="text-align:right;"> 76.090 </td> </tr> <tr> <td style="text-align:right;"> NA </td> <td style="text-align:left;"> Africa </td> <td style="text-align:right;"> 8631 </td> <td style="text-align:right;"> 59.398 </td> </tr> <tr> <td style="text-align:right;"> 43075000 </td> <td style="text-align:left;"> South America </td> <td style="text-align:right;"> 19316 </td> <td style="text-align:right;"> 76.068 </td> </tr> <tr> <td style="text-align:right;"> 2926000 </td> <td style="text-align:left;"> Asia </td> <td style="text-align:right;"> 9552 </td> <td style="text-align:right;"> 74.467 </td> </tr> </tbody> </table> --- ### KNN: Example ```r imputation_model <- caret::preProcess(life, method = 'knnImpute') predict(imputation_model, life) %>% head() ``` -- <table class=" lightable-paper" style='font-family: "Arial Narrow", arial, helvetica, sans-serif; margin-left: auto; margin-right: auto;'> <thead> <tr> <th style="text-align:right;"> Population </th> <th style="text-align:left;"> Continent </th> <th style="text-align:right;"> GDP_per_capita </th> <th style="text-align:right;"> life_expectancy </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> -0.0686169 </td> <td style="text-align:left;"> Asia </td> <td style="text-align:right;"> -0.8476912 </td> <td style="text-align:right;"> -1.0191474 </td> </tr> <tr> <td style="text-align:right;"> -0.2696760 </td> <td style="text-align:left;"> Europe </td> <td style="text-align:right;"> -0.3868335 </td> <td style="text-align:right;"> 0.7638346 </td> </tr> <tr> <td style="text-align:right;"> -0.0347233 </td> <td style="text-align:left;"> Africa </td> <td style="text-align:right;"> -0.2807018 </td> <td style="text-align:right;"> 0.5283028 </td> </tr> <tr> <td style="text-align:right;"> -0.2099738 </td> <td style="text-align:left;"> Africa </td> <td style="text-align:right;"> -0.5051777 </td> <td style="text-align:right;"> -1.5034788 </td> </tr> <tr> <td style="text-align:right;"> -0.0133756 </td> <td style="text-align:left;"> South America </td> <td style="text-align:right;"> 0.0408102 </td> <td style="text-align:right;"> 0.5256249 </td> </tr> <tr> <td style="text-align:right;"> -0.2694528 </td> <td style="text-align:left;"> Asia </td> <td style="text-align:right;"> -0.4581160 </td> <td style="text-align:right;"> 0.3307482 </td> </tr> </tbody> </table> --- ### Random Forest Approach Another approach would be to leverage random forest models for estimating missing values in our model. This a useful nonparametric approach because it allows us to both work with mixed type data (i.e. categorical and/or continuous data) and it allows for complex, interacted relationships. -- For this approach, we can use the `missForest` package which leverages the `randomForest` package that we have been using with `caret.` In general, for each variable in our data set `missForest`: 1. fits a random forest on the observed part (using simple imputation for missingness in other variables) 2. predicts the missing part from the model estimated in (1) 3. and continue this process until a stopping criterion is met. --- ### Random Forest Approach: Example Let's use our life expectancy data and remove a few variables: - Remove `Continent` for Benin and France - Remove `Life_expectancy` for Canada and Honduras - Remove `GDP_per_capita` for Argentina and Australia -- ```r library(missForest) life_expect_imputed <- missForest(life_expect) names(life_expect_imputed) ``` ``` ## [1] "ximp" "OOBerror" ``` --- ### Random Forest Approach: Example How'd it do? <table class=" lightable-paper" style='font-family: "Arial Narrow", arial, helvetica, sans-serif; margin-left: auto; margin-right: auto;'> <thead> <tr> <th style="text-align:left;"> County </th> <th style="text-align:left;"> Actual Value </th> <th style="text-align:left;"> Imputed Value </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Benin </td> <td style="text-align:left;"> Africa </td> <td style="text-align:left;"> Africa </td> </tr> <tr> <td style="text-align:left;"> France </td> <td style="text-align:left;"> Europe </td> <td style="text-align:left;"> Europe </td> </tr> <tr> <td style="text-align:left;"> Canada </td> <td style="text-align:left;"> 82.0 </td> <td style="text-align:left;"> 78.5 </td> </tr> <tr> <td style="text-align:left;"> Honduras </td> <td style="text-align:left;"> 74.5 </td> <td style="text-align:left;"> 70.42 </td> </tr> <tr> <td style="text-align:left;"> Argentina </td> <td style="text-align:left;"> 19,316 </td> <td style="text-align:left;"> 13,108 </td> </tr> <tr> <td style="text-align:left;"> Australia </td> <td style="text-align:left;"> 44,336 </td> <td style="text-align:left;"> 37,124 </td> </tr> </tbody> </table> And we can imagine with more predictors there would be a lot more opportunity to pick up on potential relationships. --- ### Random Forest Approach: Example 2 <img src="Week12_files/figure-html/unnamed-chunk-36-1.png" style="display: block; margin: auto;" /> --- ### Random Forest Approach: Example 2 <img src="Week12_files/figure-html/unnamed-chunk-37-1.png" style="display: block; margin: auto;" /> --- ### MICE The last approach we're going to discuss is __multivariate imputation by chained equations__ using the `mice` package. This approach allows us to use variables of mixed types and models the missingness separately for each variable. Generally, there are two steps: 1. Create `\(M\)` imputed datasets via some imputation method (such as predictive mean matching) 2. Analyze results of each dataset `\(m \in M\)` 3. Pool results where _predictive mean matching_ refers to randomly filling each missing value from a candidate value of similar predicted values (can also use many other methods such as `rf`, or `cart`). <img src="mice.png" width="533" style="display: block; margin: auto;" /> s? --- ### MICE: Example ```r library(mice) mice_data <- mice(data = boston_data_miss, m = 5, method = 'pmm') ``` ``` ## ## iter imp variable ## 1 1 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 1 2 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 1 3 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 1 4 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 1 5 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 2 1 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 2 2 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 2 3 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 2 4 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 2 5 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 3 1 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 3 2 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 3 3 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 3 4 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 3 5 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 4 1 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 4 2 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 4 3 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 4 4 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 4 5 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 5 1 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 5 2 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 5 3 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 5 4 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## 5 5 crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ``` ```r mice_data ``` ``` ## Class: mids ## Number of multiple imputations: 5 ## Imputation methods: ## crim zn indus chas nox rm age dis rad tax ## "pmm" "pmm" "pmm" "pmm" "pmm" "pmm" "pmm" "pmm" "pmm" "pmm" ## ptratio b lstat medv ## "pmm" "pmm" "pmm" "pmm" ## PredictorMatrix: ## crim zn indus chas nox rm age dis rad tax ptratio b lstat medv ## crim 0 1 1 1 1 1 1 1 1 1 1 1 1 1 ## zn 1 0 1 1 1 1 1 1 1 1 1 1 1 1 ## indus 1 1 0 1 1 1 1 1 1 1 1 1 1 1 ## chas 1 1 1 0 1 1 1 1 1 1 1 1 1 1 ## nox 1 1 1 1 0 1 1 1 1 1 1 1 1 1 ## rm 1 1 1 1 1 0 1 1 1 1 1 1 1 1 ``` --- ### MICE: Example ```r complete(mice_data) #Returns first imputed data ``` ``` ## crim zn indus chas nox rm age dis rad tax ptratio b ## 1 0.00632 18.0 2.31 0 0.5380 6.575 65.2 4.5404 1 296 15.3 396.90 ## 2 0.02731 0.0 7.07 0 0.4690 6.421 78.9 4.8122 2 242 17.8 396.90 ## 3 0.02729 0.0 7.07 0 0.4690 7.185 61.1 4.9671 2 242 17.8 392.83 ## 4 0.03237 0.0 2.18 0 0.4580 6.998 45.8 6.0622 3 222 18.7 396.90 ## 5 1.83377 0.0 2.93 0 0.4010 7.147 54.2 6.0622 3 222 18.7 396.90 ## 6 0.08221 0.0 2.18 0 0.4580 6.430 58.7 6.0622 3 222 18.7 394.12 ## 7 0.08829 12.5 7.87 0 0.5240 6.012 66.6 5.5605 5 311 15.2 395.60 ## 8 0.14455 12.5 7.87 0 0.4370 6.172 34.5 5.9505 5 311 15.2 396.90 ## 9 0.21124 12.5 7.87 0 0.5240 5.631 100.0 6.0821 5 311 15.2 386.63 ## 10 0.17004 12.5 7.87 0 0.5440 6.004 85.9 6.5921 5 311 15.2 386.71 ## 11 0.22489 12.5 7.87 0 0.5240 6.377 54.2 6.3467 5 311 15.2 392.52 ## 12 0.11747 12.5 7.87 0 0.5240 6.009 82.9 6.2267 5 311 15.2 390.70 ## 13 0.09378 12.5 7.87 0 0.5240 5.889 39.0 5.4509 5 311 15.2 390.50 ## 14 0.62976 0.0 8.14 0 0.5380 5.949 61.8 4.7075 4 307 21.0 396.90 ## 15 0.63796 0.0 8.14 0 0.5380 6.096 84.5 4.4619 4 307 21.0 380.02 ## 16 0.62739 0.0 8.14 0 0.5380 5.834 56.5 4.4986 4 307 21.0 395.62 ## 17 1.05393 0.0 8.14 0 0.5380 5.935 29.3 4.4986 4 307 21.0 386.85 ## 18 0.78420 0.0 9.90 0 0.5380 5.990 81.7 4.2579 4 307 21.0 386.75 ## 19 0.80271 0.0 8.14 0 0.5380 6.348 36.6 3.7965 4 307 17.4 288.99 ## 20 0.05644 0.0 8.14 0 0.5380 5.727 69.5 3.7965 4 307 21.0 390.95 ## 21 1.25179 0.0 8.14 0 0.5380 5.570 98.1 3.7979 4 307 21.0 376.57 ## 22 0.85204 0.0 8.14 0 0.5380 5.965 89.2 4.0123 4 307 21.0 392.53 ## 23 1.23247 0.0 10.01 0 0.5380 6.142 91.7 3.9769 4 304 21.0 396.90 ## 24 0.95577 0.0 8.14 0 0.5380 5.813 100.0 4.0952 4 307 21.0 394.54 ## 25 0.75026 0.0 8.14 0 0.5750 5.924 94.1 4.3996 4 307 21.0 394.33 ## 26 0.84054 0.0 8.14 0 0.5380 5.599 85.7 4.4546 4 307 21.0 303.42 ## 27 0.67191 0.0 8.14 0 0.5380 5.813 90.3 4.6820 4 307 20.2 376.88 ## 28 0.95577 0.0 8.14 0 0.5380 6.047 88.8 4.4534 4 307 21.0 306.38 ## 29 0.77299 0.0 8.14 0 0.5380 6.495 83.3 4.4547 4 307 21.0 387.94 ## 30 1.00245 0.0 8.14 0 0.5380 6.674 87.3 4.2390 4 307 21.0 380.23 ## 31 1.13081 0.0 8.14 0 0.5380 5.713 94.1 4.2330 4 307 21.0 360.17 ## 32 1.35472 0.0 8.14 0 0.5380 6.072 100.0 4.1750 4 307 21.0 376.73 ## 33 1.38799 0.0 8.14 0 0.5380 5.950 82.0 3.9900 4 307 21.0 232.60 ## 34 1.15172 0.0 8.14 0 0.5380 5.701 95.0 4.6820 4 307 21.0 358.77 ## 35 1.61282 0.0 8.14 0 0.5380 6.096 96.9 3.7598 4 307 21.0 248.31 ## 36 0.06417 0.0 5.96 0 0.4990 5.933 68.2 3.3603 5 279 19.2 396.90 ## 37 0.09744 0.0 5.96 0 0.4990 5.841 61.4 3.3779 5 279 19.2 377.56 ## 38 0.08014 0.0 5.96 0 0.4990 5.850 41.5 3.5549 5 277 19.2 393.23 ## 39 0.17505 0.0 6.20 0 0.4990 5.966 30.2 3.8473 5 279 19.2 393.43 ## 40 0.02763 75.0 2.95 0 0.4280 6.595 21.1 5.4011 3 252 18.3 395.63 ## 41 0.03359 75.0 2.95 0 0.4280 7.024 15.8 5.4011 3 252 18.3 395.62 ## 42 0.12744 0.0 6.91 0 0.4480 5.560 2.9 5.7209 3 233 17.9 385.41 ## 43 0.14150 0.0 6.91 0 0.4480 6.169 6.6 5.7209 3 233 17.9 383.37 ## 44 0.15936 0.0 6.91 0 0.4480 6.211 6.5 5.7209 3 233 17.9 388.45 ## 45 0.12269 0.0 6.91 0 0.4480 6.069 40.0 5.7209 3 233 17.9 389.39 ## 46 0.17142 33.0 6.91 0 0.4480 5.682 33.8 5.1004 3 233 17.9 396.90 ## 47 0.18836 0.0 3.44 0 0.4480 5.786 33.3 5.1004 3 233 17.9 396.90 ## 48 0.22927 0.0 6.91 0 0.4480 5.856 85.5 5.6894 3 233 17.9 392.74 ## 49 0.25387 0.0 6.91 0 0.4480 5.399 95.3 5.8700 3 233 17.9 396.90 ## 50 0.21977 0.0 6.91 0 0.4480 5.602 62.0 6.0877 3 233 17.9 396.90 ## 51 0.08873 21.0 5.64 0 0.4490 5.963 45.7 6.8147 4 243 16.8 395.56 ## 52 0.04337 21.0 5.64 0 0.4390 6.115 63.0 6.8147 4 243 16.8 393.97 ## 53 0.05360 21.0 5.64 0 0.4390 6.511 21.1 6.8147 4 243 16.8 396.90 ## 54 0.04981 21.0 5.64 0 0.4390 5.998 21.4 6.8147 4 243 16.8 396.90 ## 55 0.01360 75.0 4.00 0 0.4100 5.888 47.6 7.3197 3 469 21.1 396.90 ## 56 0.01311 90.0 1.22 0 0.4030 7.249 21.9 8.6966 5 226 17.9 395.93 ## 57 0.02055 85.0 5.86 0 0.4100 6.383 35.7 9.1876 2 313 17.3 396.90 ## 58 0.01432 100.0 1.32 0 0.4110 6.816 40.5 8.3248 5 256 15.1 392.90 ## 59 0.01501 25.0 5.13 0 0.4530 6.145 29.2 7.8148 8 284 19.7 390.68 ## 60 0.10328 25.0 5.13 0 0.4530 5.927 47.2 6.9320 5 284 19.7 396.90 ## 61 0.14932 25.0 5.13 0 0.4530 5.741 66.2 7.2254 8 284 19.7 395.11 ## 62 0.17171 25.0 5.13 0 0.4530 5.966 93.4 6.8185 8 284 19.7 378.08 ## 63 0.11027 25.0 5.13 0 0.4530 6.456 67.8 7.2255 8 284 17.9 396.90 ## 64 0.12650 25.0 4.93 0 0.4530 6.762 43.4 7.9809 8 284 19.7 395.58 ## 65 0.01951 17.5 1.38 0 0.4161 7.104 59.5 9.2229 3 216 18.6 393.24 ## 66 0.03584 80.0 3.37 0 0.3980 6.290 17.8 6.6115 2 337 16.1 396.90 ## 67 0.04379 80.0 3.37 0 0.3980 5.787 31.1 6.6115 4 337 16.1 396.90 ## 68 0.05789 12.5 6.07 0 0.4090 5.878 21.4 6.4980 4 345 18.9 396.21 ## 69 0.13554 12.5 6.07 0 0.4090 5.594 36.8 6.4980 4 345 18.9 396.90 ## 70 0.12816 12.5 6.07 0 0.4090 5.885 33.0 6.4980 4 345 18.9 396.90 ## 71 0.08826 0.0 10.81 0 0.4130 6.417 6.6 5.2873 4 305 19.2 383.73 ## 72 0.15876 0.0 10.81 0 0.4130 5.961 17.5 5.2873 4 305 19.2 376.94 ## 73 0.09164 0.0 10.81 0 0.4130 6.065 7.8 5.2873 4 305 19.2 390.91 ## 74 0.19539 0.0 10.81 0 0.4130 6.245 6.2 5.2873 4 305 19.2 377.17 ## 75 0.07896 0.0 12.83 0 0.4370 6.273 6.0 4.2515 5 398 18.7 394.92 ## 76 0.09512 0.0 12.83 0 0.4370 6.286 45.0 4.5026 5 398 18.7 383.23 ## 77 0.10153 0.0 12.83 0 0.4370 6.279 74.5 4.0522 5 398 18.7 373.66 ## 78 0.08707 0.0 12.83 0 0.4370 6.140 45.8 4.0905 5 398 18.7 386.96 ## 79 0.05646 0.0 12.83 0 0.4370 6.232 53.7 5.0141 5 398 18.7 386.40 ## 80 0.08387 0.0 12.83 0 0.4370 5.874 36.6 4.5026 5 398 18.7 396.06 ## 81 0.04113 25.0 4.86 0 0.4260 6.727 33.5 5.4007 4 281 19.0 396.90 ## 82 0.04462 25.0 4.86 0 0.4280 6.619 70.4 5.4007 4 281 19.0 390.64 ## 83 0.03659 25.0 4.86 0 0.4260 6.302 37.2 5.4007 4 281 19.0 396.90 ## 84 0.03551 25.0 4.86 0 0.4260 6.167 46.7 5.4007 4 281 19.0 390.64 ## 85 0.05059 0.0 4.49 0 0.4490 6.389 48.0 4.7794 2 247 18.5 396.90 ## 86 0.05735 0.0 4.49 0 0.4490 6.630 56.1 4.4377 3 247 18.5 392.30 ## 87 0.05188 0.0 4.49 0 0.4490 6.015 45.1 4.4272 3 247 18.5 395.99 ## 88 0.07151 0.0 4.49 0 0.4490 6.121 56.8 3.6150 3 247 18.5 395.15 ## 89 0.05660 0.0 3.41 0 0.4890 7.007 86.3 3.4217 2 270 17.8 396.90 ## 90 0.05302 0.0 3.41 0 0.5100 7.079 63.1 3.4145 2 270 17.8 396.06 ## 91 0.31533 0.0 3.41 0 0.4890 6.417 66.1 3.0923 2 270 17.8 392.18 ## 92 0.03932 0.0 3.41 0 0.5750 6.405 73.9 3.0921 2 270 17.8 393.55 ## 93 0.04203 28.0 5.19 0 0.4640 6.442 53.6 3.6659 4 270 18.2 396.90 ## 94 0.02875 28.0 15.04 0 0.4640 6.211 28.9 3.6659 4 270 18.2 396.33 ## 95 0.04294 28.0 15.04 0 0.4640 6.249 77.3 3.6150 4 270 18.2 396.90 ## 96 0.12204 0.0 2.89 0 0.4450 6.625 57.8 3.4952 2 276 18.0 357.98 ## 97 0.11504 0.0 2.89 0 0.4450 5.998 22.3 3.4952 2 276 18.0 391.83 ## 98 1.83377 0.0 2.89 0 0.4450 8.069 76.0 3.4952 2 276 18.0 396.90 ## 99 0.08187 0.0 2.89 0 0.4450 7.820 36.9 3.4952 2 276 18.0 393.53 ## 100 0.06860 0.0 2.89 0 0.4450 7.416 62.5 3.4952 2 276 18.0 396.90 ## 101 0.14866 0.0 8.56 0 0.5200 6.727 65.2 2.7778 5 384 20.9 394.76 ## 102 0.11432 0.0 8.56 0 0.5200 6.781 71.3 2.8561 5 384 20.9 395.58 ## 103 0.22876 0.0 8.56 0 0.5200 6.405 85.4 2.7147 5 384 20.2 392.33 ## 104 0.21161 0.0 8.56 0 0.5200 6.137 87.4 2.7147 5 384 20.9 394.47 ## 105 0.13960 0.0 8.56 0 0.5200 6.167 90.0 2.4210 5 384 20.9 392.69 ## 106 0.13262 0.0 8.56 0 0.5730 5.851 96.7 2.1069 5 384 20.9 394.05 ## 107 0.17120 0.0 8.56 0 0.5200 6.301 91.9 2.8340 5 384 20.9 395.67 ## 108 0.13117 0.0 8.56 0 0.5200 6.127 85.2 2.1224 5 384 20.9 387.69 ## 109 0.12802 0.0 8.56 0 0.5200 6.474 97.1 3.4952 5 384 20.9 395.24 ## 110 0.26363 0.0 9.69 0 0.5440 6.229 91.2 2.5451 5 384 20.9 391.23 ## 111 0.10793 0.0 8.56 0 0.5200 6.195 54.4 2.7778 5 384 20.9 393.49 ## 112 0.10084 0.0 10.01 0 0.5470 6.715 81.6 2.6775 6 432 17.8 395.59 ## 113 0.12329 0.0 10.01 0 0.5470 5.913 92.9 2.3534 6 432 20.2 394.95 ## 114 0.22212 0.0 10.01 0 0.5470 6.092 95.4 2.5480 6 432 17.8 396.90 ## 115 0.14231 0.0 10.01 0 0.5470 6.254 84.2 2.2565 6 432 17.8 388.74 ## 116 0.17134 0.0 10.01 0 0.5470 5.869 88.2 2.4631 6 432 17.8 344.91 ## 117 0.13158 0.0 10.01 0 0.5470 6.176 72.5 2.7301 6 432 17.8 393.30 ## 118 0.15098 0.0 10.01 0 0.5470 6.021 82.6 2.7474 6 432 17.8 394.51 ## 119 0.13058 0.0 10.01 0 0.5470 5.872 100.0 2.4775 6 432 17.8 338.63 ## 120 0.14476 0.0 10.01 0 0.5470 5.731 65.2 4.4547 6 432 17.8 391.50 ## 121 0.06899 0.0 25.65 0 0.5810 5.870 69.7 2.2577 2 188 19.1 389.15 ## 122 0.07165 0.0 25.65 0 0.5810 6.004 84.1 2.1974 2 188 19.1 377.67 ## 123 0.09299 0.0 25.65 0 0.5810 5.961 92.9 2.0869 2 188 19.1 396.90 ## 124 0.15038 0.0 10.59 0 0.5810 5.856 97.0 1.9444 2 188 19.1 370.31 ## 125 0.09849 0.0 25.65 0 0.5810 5.879 95.8 1.8125 2 188 19.1 379.38 ## 126 0.16902 0.0 25.65 0 0.5810 5.986 88.4 1.9929 2 188 19.1 393.29 ## 127 0.38735 0.0 25.65 0 0.6050 5.613 95.6 1.7572 2 188 19.1 359.29 ## 128 0.25915 0.0 21.89 0 0.6240 5.693 96.0 1.7883 4 437 21.2 392.11 ## 129 0.32543 0.0 21.89 0 0.6240 6.431 98.8 1.8125 4 437 21.2 395.59 ## 130 0.88125 0.0 21.89 0 0.6240 5.637 94.7 1.9799 4 437 21.2 396.90 ## 131 0.36920 0.0 21.89 0 0.6240 6.458 98.9 2.1185 4 437 21.2 395.04 ## 132 1.19294 0.0 21.89 0 0.6240 6.326 97.7 2.2710 4 437 21.2 396.90 ## 133 0.59005 0.0 21.89 0 0.6240 6.372 97.9 2.3274 4 437 21.2 385.76 ## 134 0.32982 0.0 21.89 0 0.5810 5.822 95.4 2.4699 4 437 21.2 388.69 ## 135 0.97617 0.0 21.89 0 0.6240 5.757 98.4 2.3460 4 437 21.2 262.76 ## 136 0.55778 0.0 21.89 0 0.6240 6.335 98.2 2.1107 4 437 21.2 394.67 ## 137 0.32264 0.0 21.89 0 0.6240 5.942 93.5 1.9669 4 437 21.2 378.25 ## 138 0.35233 0.0 21.89 0 0.6240 6.454 98.4 1.8498 4 437 21.2 394.08 ## 139 0.24980 0.0 21.89 0 0.6240 5.857 98.2 1.6686 4 437 21.2 392.04 ## 140 0.54452 0.0 21.89 0 0.6240 6.151 97.9 1.6687 4 437 21.2 396.90 ## 141 0.29090 0.0 18.10 0 0.6240 6.174 93.6 1.6119 4 437 21.2 388.08 ## 142 1.62864 0.0 21.89 0 0.6240 5.000 100.0 1.4394 4 437 21.2 396.90 ## 143 3.32105 0.0 19.58 1 0.8710 5.403 100.0 1.3216 5 403 14.7 396.90 ## 144 4.09740 0.0 19.58 0 0.8710 5.468 100.0 1.4118 5 403 14.7 396.90 ## 145 2.77974 0.0 19.58 0 0.8710 4.903 97.8 1.3459 5 403 14.7 396.90 ## 146 2.37934 0.0 19.58 0 0.6790 6.130 100.0 1.4191 5 403 14.7 172.91 ## 147 0.04294 0.0 19.58 0 0.8710 5.628 100.0 1.5166 5 403 14.7 169.27 ## 148 2.36862 0.0 19.58 0 0.8710 4.926 95.7 1.4608 5 403 14.7 391.71 ## 149 2.33099 0.0 19.58 0 0.8710 5.186 93.8 1.5296 5 403 14.7 356.99 ## 150 2.73397 0.0 19.58 0 0.8710 5.597 94.9 1.5257 5 403 14.7 351.85 ## 151 0.04741 0.0 19.58 0 0.8710 6.122 97.3 1.6180 5 403 14.7 372.80 ## 152 1.49632 0.0 19.58 0 0.8710 5.404 100.0 1.5916 5 403 14.7 341.60 ## 153 1.12658 0.0 19.58 1 0.8710 5.012 88.0 1.6102 5 403 14.7 343.28 ## 154 2.14918 0.0 19.58 0 0.8710 5.709 98.5 1.6232 5 403 14.7 261.95 ## 155 1.41385 0.0 19.58 1 0.8710 6.129 100.0 1.7494 5 403 14.7 321.02 ## 156 3.53501 0.0 19.58 1 0.8710 6.152 82.6 1.7455 5 403 14.7 88.01 ## 157 0.12329 0.0 19.58 0 0.8710 5.272 94.0 1.7364 5 403 14.7 88.63 ## 158 1.22358 0.0 19.58 0 0.6050 6.943 72.7 1.8773 5 403 14.7 363.43 ## 159 1.34284 0.0 19.58 0 0.6050 6.066 100.0 1.7573 5 403 14.7 386.71 ## 160 1.42502 0.0 19.58 0 0.8710 6.510 100.0 1.1296 5 403 14.7 364.31 ## 161 1.27346 0.0 19.58 1 0.6050 6.250 92.6 1.7984 5 403 14.7 338.92 ## 162 1.46336 0.0 19.58 0 0.6050 7.489 90.8 1.9709 5 403 14.7 374.43 ## 163 1.83377 0.0 19.58 1 0.6050 7.802 98.2 2.0407 5 403 14.7 389.61 ## 164 1.51902 0.0 19.58 1 0.6050 8.375 93.9 2.1620 5 403 13.0 388.45 ## 165 2.24236 0.0 19.58 0 0.6050 5.854 91.8 2.4220 5 403 14.7 395.11 ## 166 2.92400 0.0 19.58 0 0.6050 6.101 67.2 2.2834 5 403 14.7 240.16 ## 167 2.01019 0.0 19.58 0 0.6050 7.929 96.2 2.0459 5 403 14.7 369.30 ## 168 1.80028 0.0 19.58 0 0.6050 6.169 79.2 2.4259 5 403 14.7 227.61 ## 169 2.30040 0.0 19.58 0 0.6050 6.319 96.1 2.1000 5 403 14.7 297.09 ## 170 2.44953 0.0 19.58 0 0.6050 6.402 95.2 2.2625 5 403 14.7 330.04 ## 171 1.20742 0.0 19.58 0 0.6050 5.875 94.6 2.4259 5 403 14.7 292.29 ## 172 2.31390 0.0 19.58 0 0.6050 5.880 97.3 2.3887 5 403 14.7 348.13 ## 173 0.13914 0.0 4.05 0 0.5100 5.572 88.5 2.5961 5 296 18.4 396.90 ## 174 0.09178 0.0 4.05 0 0.5100 6.416 84.1 2.6463 5 296 16.6 395.50 ## 175 0.08447 0.0 4.05 0 0.5100 5.859 68.7 2.7019 5 296 16.6 393.23 ## 176 0.06664 0.0 4.05 0 0.5100 3.561 33.1 3.1323 5 296 16.6 390.96 ## 177 0.07022 0.0 4.05 0 0.5100 6.020 47.2 3.5549 5 296 16.9 393.23 ## 178 0.05425 0.0 4.05 0 0.5100 6.315 73.4 3.3175 5 296 16.6 395.60 ## 179 0.06642 0.0 4.05 0 0.5100 8.040 74.4 2.9153 5 296 16.6 391.27 ## 180 0.05780 0.0 2.46 0 0.4880 6.980 58.4 2.8290 3 193 17.8 396.90 ## 181 0.06588 0.0 2.46 0 0.4880 8.040 83.3 2.7410 3 193 17.8 395.56 ## 182 0.06888 0.0 2.46 0 0.4880 6.144 62.2 2.5979 3 193 17.8 396.90 ## 183 0.09103 0.0 2.46 0 0.4880 7.155 92.2 2.7006 3 193 17.8 394.12 ## 184 0.10008 0.0 2.46 0 0.4880 6.563 95.6 2.8470 3 193 17.8 396.90 ## 185 0.08308 0.0 2.46 0 0.4880 5.604 89.8 2.9879 3 193 17.4 391.00 ## 186 0.06047 0.0 2.46 0 0.4880 6.153 68.8 3.2797 2 193 17.8 387.11 ## 187 0.05602 0.0 2.46 0 0.4880 7.831 53.6 3.1992 3 193 17.8 392.63 ## 188 0.07875 45.0 3.44 0 0.4370 6.782 41.1 3.7886 5 398 15.2 393.87 ## 189 0.12579 45.0 3.44 0 0.4370 6.595 29.1 4.5667 5 398 15.2 382.84 ## 190 0.08370 45.0 3.44 0 0.4370 7.185 38.9 4.5667 5 398 15.2 396.90 ## 191 0.09068 45.0 3.44 0 0.4370 6.951 21.5 6.4798 5 398 15.2 377.68 ## 192 0.06911 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 389.71 ## 193 0.08664 45.0 3.44 0 0.4370 7.178 26.3 6.4798 5 398 15.2 390.49 ## 194 0.02187 60.0 2.93 0 0.4010 6.800 9.9 6.2196 1 265 15.6 393.37 ## 195 0.01439 60.0 2.93 0 0.4010 6.604 18.8 6.2196 1 265 15.6 376.70 ## 196 0.01381 80.0 0.46 0 0.4220 7.875 32.0 5.6484 4 255 14.4 394.23 ## 197 0.04011 80.0 1.52 0 0.4040 7.287 34.1 7.3090 2 329 12.6 396.90 ## 198 0.04666 80.0 1.52 0 0.4040 7.107 36.6 7.3090 2 329 12.6 354.31 ## 199 0.03768 80.0 1.52 0 0.4040 7.274 38.3 7.3090 2 329 12.6 392.20 ## 200 0.03150 95.0 1.47 0 0.4030 6.975 15.3 7.6534 3 402 14.7 396.90 ## 201 0.01778 95.0 1.47 0 0.4030 7.135 13.9 7.6534 3 402 17.0 384.30 ## 202 0.03445 82.5 2.03 0 0.4150 6.162 38.4 6.2700 2 348 14.7 393.77 ## 203 0.02177 82.5 2.03 0 0.4150 7.610 15.7 6.2700 1 348 14.7 395.38 ## 204 0.49298 95.0 2.68 0 0.4161 7.853 33.2 5.1180 4 224 14.7 392.78 ## 205 0.02009 95.0 2.68 0 0.4161 8.034 31.9 5.1180 4 224 14.7 390.55 ## 206 0.13642 0.0 10.59 0 0.4890 5.891 22.3 3.9454 4 277 18.6 343.28 ## 207 0.22969 0.0 10.59 0 0.4890 6.326 56.5 4.3549 4 277 18.6 394.87 ## 208 0.25199 0.0 10.59 0 0.4890 5.783 72.7 4.3549 4 277 18.6 389.43 ## 209 0.13587 0.0 10.59 1 0.4890 6.064 59.1 4.2392 4 277 18.6 381.32 ## 210 0.43571 0.0 10.59 1 0.4890 5.344 100.0 3.8750 4 277 18.6 396.90 ## 211 0.17446 0.0 10.59 1 0.4890 5.960 92.1 3.8771 4 277 18.6 393.25 ## 212 0.37578 0.0 10.59 1 0.4640 5.404 88.6 3.6650 4 277 18.6 395.24 ## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 390.94 ## 214 0.14052 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 385.81 ## 215 0.28955 0.0 10.59 0 0.4890 5.412 9.8 3.5875 4 277 18.6 348.93 ## 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 6 277 17.8 393.63 ## 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 ## 218 0.07013 0.0 13.89 0 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 ## 219 0.11069 0.0 13.89 1 0.5500 5.951 93.8 2.8893 5 276 16.4 396.90 ## 220 0.11425 0.0 13.89 1 0.5500 6.373 71.3 3.3633 5 276 16.4 393.74 ## 221 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 ## 222 0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 ## 223 0.62356 0.0 6.20 0 0.5070 6.879 77.7 2.3817 8 307 17.4 390.39 ## 224 0.61470 0.0 6.20 0 0.5070 6.618 80.8 3.2721 4 307 17.4 396.90 ## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 ## 226 0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 ## 227 0.38214 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38 ## 228 0.41238 0.0 7.38 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 ## 229 0.06211 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 ## 230 0.15876 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34 ## 231 0.53700 0.0 6.20 0 0.5040 5.981 68.1 3.6715 8 307 17.4 378.35 ## 232 0.46296 0.0 6.20 0 0.5040 7.412 76.9 3.6715 8 307 17.4 376.14 ## 233 0.57529 0.0 6.20 0 0.5070 8.337 73.3 3.8384 8 307 15.2 390.11 ## 234 0.33147 0.0 6.20 0 0.5070 8.247 32.3 3.6519 8 307 17.4 378.95 ## 235 0.44791 0.0 6.20 1 0.5070 6.726 66.5 3.6519 8 307 17.4 360.20 ## 236 0.11329 0.0 6.20 0 0.5070 6.086 61.5 2.7778 8 307 17.4 376.75 ## 237 0.52058 0.0 6.20 1 0.5070 6.631 76.5 4.1480 8 307 17.4 388.45 ## 238 0.51183 0.0 6.20 0 0.5070 7.358 71.6 4.1480 8 307 17.4 390.07 ## 239 0.08244 30.0 4.93 0 0.4280 6.481 18.5 6.1899 6 300 16.6 379.41 ## 240 0.09252 30.0 4.93 0 0.4280 6.606 42.2 6.1899 6 300 19.6 383.78 ## 241 0.11329 30.0 4.93 0 0.4280 6.897 54.3 6.3361 6 300 16.6 390.11 ## 242 0.10612 30.0 4.93 0 0.4280 6.095 33.1 6.3361 6 300 16.6 394.62 ## 243 0.10290 30.0 4.93 0 0.4280 6.358 52.9 7.0355 6 300 16.6 372.75 ## 244 0.12757 30.0 4.93 0 0.4280 6.393 7.8 7.0355 6 300 16.6 374.71 ## 245 0.20608 22.0 5.86 0 0.4310 5.593 76.5 7.9549 7 330 19.1 372.49 ## 246 0.19133 22.0 5.86 0 0.4310 5.605 70.2 7.9549 7 330 19.1 389.13 ## 247 0.33983 22.0 5.86 0 0.4310 6.108 34.9 8.0555 7 330 19.1 390.18 ## 248 0.19657 34.0 5.86 0 0.4310 6.226 79.2 8.0555 7 330 19.1 376.14 ## 249 0.16439 52.5 5.86 0 0.4310 6.433 49.1 7.8265 4 330 19.1 374.71 ## 250 0.19073 95.0 5.86 0 0.4310 6.718 17.5 7.8278 7 330 15.5 393.74 ## 251 0.14030 22.0 2.18 0 0.4310 6.487 13.0 7.3967 7 330 19.1 396.28 ## 252 0.21409 22.0 5.86 0 0.4310 6.438 8.9 7.3967 7 330 19.1 377.07 ## 253 0.08221 22.0 5.86 0 0.4310 6.957 6.8 8.9067 7 330 19.1 386.09 ## 254 0.36894 22.0 5.86 0 0.4310 8.259 8.4 8.9067 7 330 19.1 396.90 ## 255 0.04819 80.0 3.64 0 0.3920 6.108 32.0 9.2203 1 315 16.4 392.89 ## 256 0.03548 80.0 3.64 0 0.3920 5.876 19.1 9.2203 1 315 16.4 395.18 ## 257 0.01538 90.0 3.75 0 0.3940 7.454 34.2 6.3361 3 244 15.9 386.34 ## 258 0.61154 20.0 3.97 0 0.6470 8.704 86.9 1.8010 5 264 13.0 389.70 ## 259 0.66351 20.0 3.97 0 0.6470 7.333 100.0 1.8946 5 264 13.0 383.29 ## 260 0.65665 20.0 8.14 0 0.6470 6.842 100.0 2.0107 5 264 13.0 391.93 ## 261 0.54011 20.0 3.97 0 0.6470 7.203 81.8 2.1121 5 264 13.0 392.80 ## 262 0.53412 0.0 3.97 0 0.6470 6.957 89.4 2.1398 5 264 13.0 388.37 ## 263 0.52014 20.0 3.97 0 0.6470 8.398 91.5 2.2885 5 264 13.0 386.86 ## 264 0.82526 20.0 3.97 0 0.6470 7.327 94.5 2.0788 5 264 13.0 393.42 ## 265 0.55007 20.0 3.97 0 0.6470 7.206 91.6 1.9301 5 264 13.0 387.89 ## 266 0.76162 20.0 3.97 0 0.6470 5.560 62.8 1.9865 5 264 17.4 392.40 ## 267 0.78570 20.0 3.97 0 0.6470 7.014 84.6 2.1329 5 264 18.3 384.07 ## 268 0.57834 20.0 3.97 0 0.5750 8.297 67.0 2.4216 5 264 13.0 384.54 ## 269 0.09068 20.0 3.97 0 0.5750 7.470 52.6 2.8720 5 264 13.0 390.30 ## 270 0.09065 20.0 6.96 1 0.4640 5.920 61.5 3.9175 3 223 18.6 391.34 ## 271 0.29916 20.0 6.96 0 0.4640 5.856 42.1 4.4290 3 223 18.6 388.65 ## 272 0.16211 20.0 6.96 0 0.4640 6.240 16.3 4.7872 3 223 18.6 396.90 ## 273 0.11460 20.0 6.96 0 0.4640 6.538 58.7 3.9175 3 223 18.6 394.96 ## 274 0.22188 20.0 6.96 1 0.4640 7.691 51.8 4.3665 3 223 18.6 390.77 ## 275 0.05644 40.0 6.20 1 0.4480 6.758 32.9 4.0776 4 254 17.6 396.90 ## 276 0.09604 0.0 6.41 0 0.4470 6.854 42.8 4.2673 4 254 17.6 396.90 ## 277 0.10469 40.0 6.41 1 0.4470 7.267 49.0 4.7872 4 254 17.6 396.90 ## 278 0.06127 40.0 6.41 1 0.4470 6.826 27.6 4.8628 4 254 17.6 393.45 ## 279 0.07978 40.0 6.41 0 0.4470 6.482 32.1 4.1403 4 254 17.6 396.90 ## 280 0.21038 20.0 3.33 0 0.4429 6.812 32.2 4.1007 5 216 14.9 396.90 ## 281 0.03578 20.0 3.33 0 0.4429 7.820 64.5 4.6947 5 216 14.9 387.31 ## 282 0.59005 20.0 3.33 0 0.4429 6.968 37.2 5.2447 5 216 14.9 393.74 ## 283 0.06129 20.0 3.33 1 0.4429 7.645 49.7 5.2119 5 193 14.9 377.07 ## 284 0.01501 90.0 1.21 1 0.4010 7.923 24.8 5.8850 1 198 13.6 395.52 ## 285 0.00906 90.0 2.97 0 0.4000 7.088 20.8 7.8278 1 285 15.3 394.72 ## 286 0.01096 55.0 2.25 0 0.3890 6.453 31.9 7.3073 1 300 15.3 394.72 ## 287 0.01965 80.0 1.76 0 0.3850 6.230 31.5 9.0892 1 430 18.2 341.60 ## 288 0.03871 52.5 5.32 0 0.4050 6.209 31.3 7.3172 6 293 16.6 396.90 ## 289 0.04590 52.5 5.32 0 0.4050 6.315 45.6 7.3172 6 293 16.6 396.90 ## 290 0.04297 52.5 5.32 0 0.4880 6.565 22.9 7.3172 5 293 16.6 371.72 ## 291 0.03502 80.0 4.95 0 0.4090 6.861 27.9 5.1167 4 245 19.2 396.90 ## 292 0.07886 80.0 4.95 0 0.4110 7.148 27.7 5.1167 4 245 19.2 396.90 ## 293 0.03615 80.0 4.95 0 0.4110 6.630 23.4 5.1167 4 245 19.2 396.90 ## 294 0.08265 0.0 13.92 0 0.4370 6.127 18.4 5.5027 4 289 16.0 396.90 ## 295 0.08199 0.0 13.92 0 0.4370 6.009 42.3 5.5027 4 289 16.0 396.90 ## 296 0.12932 0.0 13.92 0 0.4690 6.678 31.1 5.9604 4 289 16.0 396.90 ## 297 0.05372 0.0 13.92 0 0.4370 6.549 51.0 5.9604 4 289 16.0 392.85 ## 298 0.14103 0.0 13.92 0 0.4370 5.790 58.0 6.3200 4 289 16.0 396.90 ## 299 0.06466 70.0 2.24 0 0.4000 6.345 20.1 7.8278 5 384 14.8 368.24 ## 300 0.05561 70.0 2.24 0 0.4000 7.041 10.0 7.8278 5 358 14.8 371.58 ## 301 0.04417 70.0 2.24 0 0.4000 6.871 47.4 7.8278 5 358 14.8 390.86 ## 302 0.03537 34.0 6.09 0 0.4330 6.590 40.4 5.4917 7 329 16.1 395.75 ## 303 0.09266 34.0 6.09 0 0.4330 6.495 18.4 5.4917 7 329 16.1 383.61 ## 304 0.10000 34.0 6.09 0 0.4330 6.982 17.7 5.4917 7 329 16.1 390.43 ## 305 0.05515 33.0 2.18 0 0.4720 7.236 41.1 4.0220 7 222 18.4 344.91 ## 306 0.05479 33.0 2.18 0 0.4720 6.616 58.1 3.3700 7 222 18.4 393.36 ## 307 0.07503 33.0 2.18 0 0.4720 6.943 71.9 3.0992 7 304 18.4 396.90 ## 308 0.04932 33.0 2.18 0 0.4720 6.849 70.3 3.1827 7 222 18.4 396.90 ## 309 0.49298 0.0 9.90 0 0.5440 6.635 82.5 3.3175 4 304 18.4 396.90 ## 310 0.34940 0.0 9.90 0 0.5440 5.972 76.7 3.1025 4 304 18.4 396.24 ## 311 2.63548 0.0 8.14 0 0.5440 4.973 37.8 2.5194 4 304 18.4 350.45 ## 312 0.79041 0.0 9.90 0 0.5440 6.122 52.8 2.6403 4 304 18.4 396.90 ## 313 0.26169 0.0 9.90 0 0.5440 6.023 90.4 2.8340 4 304 18.4 396.30 ## 314 0.26938 0.0 9.90 0 0.5440 6.266 82.8 3.2628 4 304 18.4 393.39 ## 315 0.36920 0.0 9.90 0 0.5440 6.567 87.3 3.6023 4 304 18.4 395.69 ## 316 0.25356 0.0 6.20 0 0.5850 5.705 77.7 3.9450 4 304 18.4 396.42 ## 317 0.31827 0.0 9.90 0 0.5440 5.914 83.2 3.9986 4 304 18.4 390.70 ## 318 0.24522 0.0 9.90 0 0.5440 5.782 71.7 4.0317 4 304 18.4 396.90 ## 319 0.40202 0.0 9.90 0 0.5440 6.382 67.2 3.5325 4 304 18.4 395.21 ## 320 0.47547 0.0 9.90 0 0.5440 6.113 85.1 4.0019 4 304 18.4 396.23 ## 321 0.16760 0.0 7.38 0 0.4930 6.426 52.3 4.5404 5 287 19.6 396.90 ## 322 0.18159 0.0 7.38 0 0.4930 6.376 54.3 4.5404 5 287 19.6 392.78 ## 323 0.35114 0.0 7.38 0 0.4930 6.041 49.9 4.7211 5 287 19.6 396.90 ## 324 0.28392 0.0 7.38 0 0.4930 5.708 74.3 4.7211 5 287 19.6 391.13 ## 325 0.34109 0.0 4.39 0 0.4930 6.415 40.1 4.7211 5 287 19.6 396.90 ## 326 0.19186 0.0 7.38 0 0.4930 6.549 14.7 5.4159 5 287 19.6 393.68 ## 327 0.30347 0.0 7.38 0 0.4930 6.312 28.9 5.4159 5 287 19.6 396.90 ## 328 0.24103 0.0 7.38 0 0.4930 6.083 43.7 5.0141 5 287 19.6 396.90 ## 329 0.06617 0.0 3.24 0 0.4600 5.868 25.8 5.2146 4 430 16.9 382.44 ## 330 0.06724 0.0 3.24 0 0.4600 6.333 17.2 5.2146 4 352 16.9 375.21 ## 331 0.04544 0.0 3.24 0 0.4600 6.144 32.2 5.8736 4 430 20.2 368.57 ## 332 0.05023 35.0 6.06 0 0.4379 5.706 28.4 6.6407 1 304 16.9 394.02 ## 333 0.03466 35.0 6.06 0 0.4379 6.031 23.3 6.6407 1 304 16.9 362.25 ## 334 0.05083 0.0 5.19 0 0.5150 6.316 38.1 6.4584 5 224 20.2 389.71 ## 335 0.03738 0.0 5.19 0 0.5150 6.310 38.5 4.7211 5 224 20.2 389.40 ## 336 0.03961 0.0 5.19 0 0.5150 6.037 34.5 5.9853 5 224 20.2 396.90 ## 337 0.03427 0.0 5.19 0 0.5150 5.869 56.5 5.2311 5 224 20.2 396.90 ## 338 0.03041 0.0 5.19 0 0.5150 5.895 59.6 5.6150 5 224 20.2 394.81 ## 339 0.03306 0.0 5.19 0 0.5150 6.059 37.3 4.8122 5 224 20.2 396.14 ## 340 0.05497 0.0 5.19 0 0.5150 5.985 22.3 4.8122 5 224 20.2 396.90 ## 341 0.06151 0.0 5.19 0 0.5150 5.968 85.5 4.8122 5 224 20.2 396.90 ## 342 0.01301 45.0 1.52 0 0.4420 7.241 18.5 7.0379 1 284 15.5 394.74 ## 343 0.02498 0.0 1.89 0 0.5180 6.540 59.7 6.0877 1 422 15.9 389.96 ## 344 0.02543 55.0 3.78 0 0.4840 6.696 56.4 5.7321 5 370 17.6 396.90 ## 345 0.03049 55.0 3.78 0 0.4840 6.874 28.1 6.4654 4 370 17.6 387.97 ## 346 0.03113 0.0 4.39 0 0.4420 6.014 48.5 8.0136 3 352 18.8 385.64 ## 347 0.06162 22.0 4.39 0 0.4420 5.898 52.3 8.0136 3 352 18.8 364.61 ## 348 0.01870 85.0 4.15 0 0.4290 6.516 27.7 8.5353 4 351 17.9 392.43 ## 349 0.01501 80.0 2.01 0 0.4350 6.635 29.7 8.3440 4 358 17.0 390.94 ## 350 0.02899 40.0 1.25 0 0.4290 6.939 34.5 8.7921 1 335 19.7 389.85 ## 351 0.06211 40.0 1.25 0 0.4290 6.490 44.4 8.7921 1 335 19.7 396.90 ## 352 0.07950 60.0 1.69 0 0.4110 6.579 35.9 10.7103 4 411 18.3 370.78 ## 353 0.07244 60.0 5.13 0 0.4110 5.884 18.5 10.7103 4 411 19.1 392.33 ## 354 0.01709 90.0 2.02 0 0.4100 6.728 36.1 12.1265 5 187 17.0 384.46 ## 355 0.04301 80.0 1.91 0 0.4130 6.153 21.9 10.5857 4 334 22.0 382.80 ## 356 0.10659 80.0 1.91 0 0.4130 5.936 19.5 10.5857 4 334 22.0 376.04 ## 357 8.98296 0.0 18.10 1 0.7700 6.212 97.4 2.1222 24 666 20.2 377.73 ## 358 3.84970 0.0 18.10 1 0.7700 6.395 91.0 2.5052 24 666 20.2 391.34 ## 359 5.20177 0.0 18.10 1 0.7700 6.127 83.4 2.7227 24 666 20.2 395.43 ## 360 2.81838 0.0 18.10 0 0.7700 6.112 81.3 2.5091 24 666 20.2 390.74 ## 361 4.54192 0.0 18.10 0 0.7700 6.398 88.0 2.5182 24 666 20.2 374.56 ## 362 3.83684 0.0 18.10 0 0.7700 6.251 91.1 2.2955 24 666 20.2 350.65 ## 363 3.67822 0.0 18.10 0 0.7700 5.362 96.2 2.1036 24 666 20.2 380.79 ## 364 4.22239 0.0 18.10 1 0.7700 5.803 89.0 1.9047 24 666 20.9 353.04 ## 365 3.47428 0.0 18.10 1 0.7180 8.780 82.9 1.9047 24 666 20.2 354.55 ## 366 4.55587 0.0 18.10 0 0.7180 3.561 87.9 1.6132 24 666 20.2 396.90 ## 367 3.69695 0.0 18.10 0 0.7180 4.963 91.4 1.7523 24 666 20.2 316.03 ## 368 13.52220 0.0 18.10 0 0.6310 3.863 100.0 1.5106 24 666 20.2 131.42 ## 369 4.89822 0.0 18.10 0 0.6310 4.970 100.0 1.3325 24 666 20.2 375.52 ## 370 0.40771 0.0 18.10 1 0.6310 6.683 96.8 1.3567 24 666 20.2 375.33 ## 371 6.53876 0.0 18.10 1 0.6310 7.016 97.5 1.2024 24 666 20.2 392.05 ## 372 9.23230 0.0 18.10 0 0.6310 6.216 100.0 1.1691 24 666 20.2 366.15 ## 373 8.26725 0.0 18.10 1 0.6680 5.875 89.6 1.1296 24 666 20.2 347.88 ## 374 11.10810 0.0 18.10 0 0.6680 4.906 100.0 1.1742 24 666 20.2 396.90 ## 375 18.49820 0.0 18.10 0 0.6680 4.138 100.0 1.1370 24 666 20.2 396.90 ## 376 19.60910 0.0 18.10 0 0.6710 7.313 97.9 1.3163 24 666 20.2 396.90 ## 377 15.28800 0.0 18.10 0 0.6710 6.649 93.3 1.3449 24 666 20.2 363.02 ## 378 9.82349 0.0 18.10 0 0.6710 6.794 98.8 1.3580 24 666 20.2 396.90 ## 379 23.64820 0.0 18.10 0 0.6710 6.380 96.2 1.3861 24 666 20.2 396.90 ## 380 17.86670 0.0 18.10 0 0.6710 6.223 100.0 1.3861 24 666 20.2 393.74 ## 381 88.97620 0.0 18.10 0 0.6710 6.968 91.9 1.4165 24 666 20.2 396.90 ## 382 15.87440 0.0 18.10 0 0.6710 6.545 99.1 1.5192 24 666 20.2 396.90 ## 383 9.18702 0.0 18.10 0 0.7000 5.536 100.0 1.5804 24 666 20.2 396.90 ## 384 7.99248 0.0 18.10 0 0.7000 5.520 100.0 1.5331 24 666 20.2 396.90 ## 385 20.08490 0.0 18.10 0 0.7000 4.368 91.2 1.4395 24 666 20.2 285.83 ## 386 16.81180 0.0 18.10 0 0.7000 5.277 98.1 1.4261 24 666 20.2 127.36 ## 387 24.39380 0.0 18.10 0 0.7000 4.652 100.0 1.4672 24 666 20.2 396.90 ## 388 22.59710 0.0 18.10 0 0.7000 5.000 89.5 1.5184 24 666 20.2 396.90 ## 389 14.33370 0.0 18.10 0 0.7000 4.880 100.0 1.5895 24 666 20.2 372.92 ## 390 8.15174 0.0 18.10 0 0.7000 5.390 98.9 1.7281 24 666 20.2 396.90 ## 391 6.96215 0.0 18.10 0 0.7000 5.713 97.0 1.9265 24 666 20.2 394.43 ## 392 5.29305 0.0 18.10 0 0.7000 6.051 82.5 2.1678 24 666 20.2 378.38 ## 393 11.57790 0.0 18.10 0 0.7000 5.036 97.0 1.7700 24 666 20.2 396.90 ## 394 7.67202 0.0 18.10 0 0.6930 6.193 92.6 1.7912 24 666 20.2 396.90 ## 395 13.35980 0.0 18.10 0 0.6930 5.887 94.7 1.7821 24 666 20.2 396.90 ## 396 8.71675 0.0 18.10 0 0.6930 6.471 98.8 1.7257 24 666 20.2 391.98 ## 397 5.87205 0.0 18.10 0 0.6930 6.405 96.0 1.6768 24 666 20.2 396.90 ## 398 7.67202 0.0 18.10 0 0.8710 5.747 98.9 1.6334 24 666 20.2 393.10 ## 399 38.35180 0.0 18.10 0 0.6930 5.453 100.0 1.4896 24 666 20.2 396.90 ## 400 9.91655 0.0 18.10 0 0.6930 5.852 77.8 1.9356 24 666 20.2 338.16 ## 401 25.04610 0.0 18.10 0 0.5970 5.987 100.0 1.5888 24 666 20.2 396.90 ## 402 14.23620 0.0 18.10 0 0.6930 5.399 100.0 1.5741 24 666 20.2 396.90 ## 403 9.59571 0.0 18.10 0 0.6930 6.404 100.0 1.6390 24 666 20.2 376.11 ## 404 24.80170 0.0 18.10 0 0.6930 5.349 96.0 1.7028 24 666 20.2 396.90 ## 405 41.52920 0.0 18.10 0 0.6930 5.531 85.4 1.6074 24 666 20.2 329.46 ## 406 67.92080 0.0 18.10 0 0.6930 5.683 100.0 1.4254 24 666 20.2 384.97 ## 407 20.71620 0.0 18.10 0 0.6590 4.138 100.0 1.1781 24 666 20.2 370.22 ## 408 11.95110 0.0 18.10 0 0.6590 5.608 100.0 1.2852 24 666 20.2 332.09 ## 409 7.40389 0.0 18.10 0 0.5970 5.617 97.9 1.8195 24 666 20.2 314.64 ## 410 14.43830 0.0 18.10 0 0.5970 6.852 100.0 1.4655 24 666 20.2 179.36 ## 411 51.13580 0.0 18.10 0 0.5970 5.757 100.0 1.4130 24 666 20.2 2.60 ## 412 14.05070 0.0 18.10 0 0.5970 6.657 100.0 1.5275 24 666 20.2 35.05 ## 413 18.81100 0.0 18.10 0 0.5970 4.628 100.0 1.5539 24 666 20.2 28.79 ## 414 28.65580 0.0 18.10 0 0.5970 5.155 100.0 1.5894 24 666 20.2 210.97 ## 415 45.74610 0.0 18.10 0 0.6930 4.519 100.0 1.6582 24 666 20.2 88.27 ## 416 18.08460 0.0 18.10 0 0.6790 6.434 100.0 1.8347 24 666 20.2 27.25 ## 417 10.83420 0.0 18.10 0 0.6790 6.782 90.8 1.8195 24 666 20.2 21.57 ## 418 25.94060 0.0 18.10 0 0.6790 5.304 89.1 2.1980 24 666 20.2 127.36 ## 419 73.53410 0.0 18.10 0 0.6790 5.957 100.0 1.8026 24 666 20.2 16.45 ## 420 11.81230 0.0 18.10 0 0.7180 6.824 76.5 1.9799 24 666 20.2 48.45 ## 421 11.08740 0.0 18.10 0 0.7180 6.525 100.0 1.8589 24 666 20.2 318.75 ## 422 7.02259 0.0 18.10 0 0.7180 6.006 95.3 1.8746 24 666 20.2 319.98 ## 423 12.04820 0.0 18.10 0 0.6140 5.648 87.6 1.9512 24 666 20.2 291.55 ## 424 7.05042 0.0 18.10 0 0.6140 5.965 85.1 2.0218 24 666 20.2 2.52 ## 425 8.79212 0.0 18.10 0 0.5840 5.565 70.6 2.0635 24 666 20.2 3.65 ## 426 15.86030 0.0 18.10 0 0.6790 5.896 95.4 1.9096 24 666 20.2 7.68 ## 427 12.24720 0.0 18.10 0 0.5840 5.837 59.7 1.9976 24 666 20.2 24.65 ## 428 37.66190 0.0 18.10 0 0.6790 6.202 78.7 1.8629 24 666 20.2 18.82 ## 429 7.36711 0.0 18.10 0 0.6790 6.193 78.1 1.9356 24 666 20.2 96.73 ## 430 9.33889 0.0 18.10 0 0.6790 6.380 95.6 1.9682 24 666 20.2 60.72 ## 431 8.49213 0.0 18.10 0 0.5840 6.348 86.1 2.0527 24 666 20.2 83.45 ## 432 10.06230 0.0 18.10 0 0.5840 6.833 80.3 2.0882 24 666 20.2 81.33 ## 433 6.44405 0.0 18.10 0 0.5840 6.425 94.1 2.2004 24 666 20.2 97.95 ## 434 5.58107 0.0 18.10 0 0.7130 6.436 87.9 2.1185 24 666 20.2 100.19 ## 435 13.91340 0.0 18.10 0 0.7130 6.208 95.0 2.2222 24 666 20.2 100.63 ## 436 11.16040 0.0 18.10 0 0.7400 6.629 94.6 2.1247 24 666 20.2 109.85 ## 437 7.99248 0.0 18.10 0 0.7400 6.461 93.3 2.0026 24 666 20.2 27.49 ## 438 15.17720 0.0 18.10 0 0.7400 6.152 100.0 1.9142 24 666 20.2 9.32 ## 439 13.67810 0.0 18.10 0 0.7400 5.935 87.9 1.8206 24 666 20.2 68.95 ## 440 9.39063 0.0 18.10 0 0.7400 5.627 93.9 1.8172 24 666 20.2 396.90 ## 441 22.05110 0.0 18.10 0 0.7400 5.818 92.4 1.8662 24 666 20.2 391.45 ## 442 9.72418 0.0 18.10 0 0.7400 6.406 97.2 2.0651 24 666 20.2 318.43 ## 443 5.66637 0.0 18.10 0 0.7400 6.219 100.0 2.0048 24 666 20.2 395.69 ## 444 9.96654 0.0 18.10 0 0.7400 6.485 100.0 1.9784 24 666 20.2 386.73 ## 445 12.80230 0.0 18.10 0 0.7400 5.854 96.6 1.8956 24 666 20.2 240.52 ## 446 10.67180 0.0 18.10 0 0.7400 6.459 94.8 1.9879 24 666 20.2 43.06 ## 447 6.28807 0.0 18.10 0 0.7400 6.341 96.4 2.0720 24 666 20.2 318.01 ## 448 9.92485 0.0 18.10 0 0.7400 6.251 96.6 2.1980 24 666 20.2 388.52 ## 449 9.96654 0.0 18.10 0 0.7130 6.185 98.7 2.2616 24 666 20.2 396.90 ## 450 7.52601 0.0 18.10 0 0.7130 6.417 98.3 2.1850 24 666 20.2 304.21 ## 451 6.71772 0.0 18.10 0 0.7130 6.749 87.9 2.3236 24 666 20.2 0.32 ## 452 5.44114 0.0 18.10 0 0.7130 6.655 98.2 2.3552 24 666 20.2 355.29 ## 453 5.09017 0.0 18.10 0 0.7130 6.297 91.8 2.3682 24 666 20.2 385.09 ## 454 8.24809 0.0 18.10 0 0.7130 7.393 99.3 2.4527 24 666 20.2 375.87 ## 455 9.51363 0.0 18.10 0 0.7130 6.728 94.1 2.4961 24 666 20.2 6.68 ## 456 4.75237 0.0 18.10 0 0.7130 6.525 86.5 2.4358 24 666 20.2 50.92 ## 457 4.66883 0.0 18.10 0 0.7130 6.393 87.9 2.5806 24 666 20.2 10.48 ## 458 8.20058 0.0 18.10 0 0.7130 6.750 80.3 2.7792 24 666 20.2 3.50 ## 459 7.75223 0.0 18.10 0 0.7130 6.301 83.7 2.7831 24 666 20.2 272.21 ## 460 6.80117 0.0 18.10 0 0.7130 6.081 84.4 2.7175 24 666 20.2 396.90 ## 461 4.81213 0.0 18.10 0 0.7130 6.701 90.0 2.5975 24 666 20.2 255.23 ## 462 3.69311 0.0 18.10 0 0.7130 6.376 88.4 2.5671 24 666 20.2 391.43 ## 463 6.65492 0.0 18.10 0 0.7130 6.137 83.0 2.7344 24 666 20.2 396.90 ## 464 2.37857 0.0 18.10 0 0.7130 6.513 89.9 2.8016 24 666 20.2 393.82 ## 465 7.83932 0.0 18.10 0 0.6550 6.209 65.4 2.9634 24 666 20.2 396.90 ## 466 3.16360 0.0 18.10 0 0.6550 5.759 48.2 2.7410 24 666 20.2 334.40 ## 467 9.72418 0.0 18.10 0 0.6550 5.952 84.7 2.8715 24 666 20.2 22.01 ## 468 4.42228 0.0 18.10 0 0.5840 6.003 94.5 2.5403 24 666 20.2 331.29 ## 469 15.57570 0.0 18.10 0 0.5800 5.926 71.0 2.9084 24 666 20.2 368.74 ## 470 13.07510 0.0 18.10 0 0.6240 5.713 56.7 2.8237 24 666 20.2 396.90 ## 471 5.66637 0.0 18.10 0 0.5800 6.167 84.0 3.0334 24 666 20.2 396.90 ## 472 4.03841 0.0 18.10 0 0.5320 6.229 90.7 3.0993 24 666 20.2 395.33 ## 473 3.56868 0.0 18.10 0 0.5800 6.437 75.0 2.8965 24 666 20.2 393.37 ## 474 4.64689 0.0 18.10 0 0.6140 6.980 67.6 2.5329 24 666 20.2 374.68 ## 475 8.05579 0.0 18.10 0 0.5840 5.427 56.7 2.4298 24 666 20.2 352.58 ## 476 6.39312 0.0 18.10 0 0.5840 6.162 97.4 2.2060 24 666 20.2 302.76 ## 477 4.87141 0.0 18.10 0 0.6140 6.484 93.6 2.3053 24 666 20.2 396.21 ## 478 15.02340 0.0 18.10 0 0.6140 5.304 97.3 2.1007 24 666 20.2 349.48 ## 479 10.23300 0.0 18.10 0 0.6140 6.185 96.7 2.1705 24 666 20.2 379.70 ## 480 14.33370 0.0 18.10 0 0.7130 6.229 88.0 1.9512 24 666 20.2 383.32 ## 481 5.82401 0.0 18.10 0 0.5320 6.242 64.7 3.4242 24 666 20.2 379.70 ## 482 5.70818 0.0 18.10 0 0.5320 6.750 74.9 3.3317 24 666 20.2 393.07 ## 483 5.73116 0.0 18.10 0 0.5320 7.061 77.0 3.4106 24 666 20.2 395.28 ## 484 2.81838 0.0 18.10 0 0.5320 5.762 40.3 4.0983 24 666 20.2 392.92 ## 485 2.37857 0.0 18.10 0 0.5830 5.871 41.9 2.3817 24 666 20.2 370.73 ## 486 3.67367 0.0 18.10 0 0.5830 6.312 51.9 3.9917 24 666 20.2 388.62 ## 487 5.69175 0.0 18.10 0 0.5830 6.114 79.8 3.6023 24 666 20.2 392.68 ## 488 4.83567 0.0 18.10 0 0.5830 5.905 53.2 3.1523 24 666 20.2 388.22 ## 489 0.08664 0.0 27.74 0 0.7130 5.454 92.7 1.8209 4 711 20.1 395.09 ## 490 0.18337 0.0 27.74 0 0.8710 5.414 98.3 1.7554 4 403 20.1 344.05 ## 491 0.20746 0.0 27.74 0 0.6090 5.093 98.0 1.8226 24 711 20.1 318.43 ## 492 0.10574 0.0 27.74 0 0.6090 5.983 98.8 1.8681 4 711 20.1 390.11 ## 493 0.11132 0.0 27.74 0 0.6090 5.983 83.5 2.1099 4 711 20.1 396.90 ## 494 0.17331 0.0 9.69 0 0.5850 6.348 54.0 2.3817 6 391 19.2 396.90 ## 495 0.27957 0.0 9.69 0 0.5850 5.926 42.6 2.3817 6 391 19.2 396.90 ## 496 0.17899 0.0 9.69 0 0.5850 5.670 28.8 2.7986 6 391 19.2 393.29 ## 497 0.28960 0.0 9.69 0 0.5850 5.390 72.9 2.7986 24 666 20.2 396.90 ## 498 0.26838 0.0 9.69 0 0.5850 5.794 70.6 2.8927 6 391 19.2 396.90 ## 499 0.23912 0.0 9.69 0 0.5850 6.019 65.3 2.4091 6 391 19.2 396.90 ## 500 0.17783 0.0 9.69 0 0.5850 5.569 73.5 2.3999 6 391 19.2 395.77 ## 501 0.22438 0.0 9.69 0 0.5850 6.027 79.7 2.4982 6 391 19.2 396.90 ## 502 0.06263 0.0 11.93 0 0.5730 6.593 69.1 2.4786 1 273 21.0 391.99 ## 503 0.04527 0.0 11.93 0 0.5730 6.120 76.7 2.2875 1 273 21.0 396.90 ## 504 0.06076 0.0 11.93 0 0.5730 6.976 79.7 2.1675 1 273 21.0 396.90 ## 505 0.10959 0.0 11.93 0 0.5730 6.490 89.3 2.3889 1 273 21.0 393.45 ## 506 0.04741 0.0 11.93 0 0.5730 6.030 80.8 2.5050 1 273 21.0 396.90 ## lstat medv ## 1 9.10 24.0 ## 2 9.14 21.6 ## 3 4.03 36.2 ## 4 2.94 33.4 ## 5 5.33 36.2 ## 6 5.21 28.7 ## 7 12.43 22.9 ## 8 19.15 27.1 ## 9 29.93 16.5 ## 10 17.10 18.9 ## 11 13.65 15.0 ## 12 13.27 18.9 ## 13 15.71 21.7 ## 14 8.26 20.4 ## 15 10.26 18.2 ## 16 8.47 19.9 ## 17 6.58 23.1 ## 18 14.67 17.5 ## 19 11.69 20.2 ## 20 11.28 18.2 ## 21 21.02 13.6 ## 22 13.83 19.6 ## 23 18.72 15.2 ## 24 19.88 14.5 ## 25 16.30 15.6 ## 26 16.51 13.9 ## 27 14.81 16.6 ## 28 17.28 14.8 ## 29 12.80 18.4 ## 30 11.98 21.0 ## 31 22.60 12.7 ## 32 13.04 14.5 ## 33 27.71 13.2 ## 34 18.35 13.1 ## 35 20.34 13.5 ## 36 9.68 18.9 ## 37 11.41 20.0 ## 38 8.77 21.0 ## 39 10.13 24.7 ## 40 4.32 30.8 ## 41 1.98 34.9 ## 42 4.84 26.6 ## 43 5.81 25.3 ## 44 7.44 24.7 ## 45 9.55 21.2 ## 46 10.21 19.3 ## 47 14.15 20.0 ## 48 18.80 16.6 ## 49 30.81 14.4 ## 50 16.20 19.4 ## 51 13.45 19.6 ## 52 9.43 20.5 ## 53 5.28 25.0 ## 54 8.43 23.4 ## 55 14.80 18.9 ## 56 4.81 35.4 ## 57 5.77 24.7 ## 58 3.95 31.6 ## 59 6.86 23.3 ## 60 9.22 19.6 ## 61 13.15 18.7 ## 62 14.44 16.0 ## 63 6.73 22.2 ## 64 7.19 25.0 ## 65 8.05 33.0 ## 66 4.67 23.5 ## 67 10.24 19.4 ## 68 8.10 22.0 ## 69 13.09 17.4 ## 70 8.79 20.9 ## 71 6.72 24.2 ## 72 9.88 21.7 ## 73 5.52 22.8 ## 74 7.54 23.4 ## 75 6.78 24.1 ## 76 8.94 21.4 ## 77 5.50 20.0 ## 78 10.27 20.8 ## 79 12.34 21.2 ## 80 9.10 20.3 ## 81 5.29 28.0 ## 82 7.22 23.9 ## 83 6.72 24.8 ## 84 7.51 22.9 ## 85 9.62 23.9 ## 86 6.53 26.6 ## 87 12.86 22.5 ## 88 8.44 22.2 ## 89 8.20 23.6 ## 90 5.70 28.7 ## 91 8.81 24.0 ## 92 8.20 22.0 ## 93 8.79 25.0 ## 94 6.21 25.0 ## 95 10.59 20.6 ## 96 6.65 28.4 ## 97 11.34 21.4 ## 98 4.21 38.7 ## 99 3.57 43.8 ## 100 6.19 33.2 ## 101 9.42 27.5 ## 102 7.67 26.5 ## 103 10.63 18.6 ## 104 13.44 19.3 ## 105 12.33 20.1 ## 106 16.47 19.5 ## 107 18.66 19.5 ## 108 14.09 20.4 ## 109 12.27 19.8 ## 110 15.55 19.4 ## 111 13.00 21.7 ## 112 12.92 22.8 ## 113 16.21 18.8 ## 114 17.09 18.7 ## 115 10.45 18.5 ## 116 15.76 18.3 ## 117 12.04 21.2 ## 118 10.30 20.8 ## 119 15.37 20.4 ## 120 13.61 19.3 ## 121 14.37 22.0 ## 122 14.27 20.3 ## 123 17.93 20.5 ## 124 25.41 17.3 ## 125 17.58 18.8 ## 126 14.81 21.4 ## 127 27.26 15.7 ## 128 17.19 16.2 ## 129 15.39 18.0 ## 130 18.34 14.3 ## 131 12.60 19.2 ## 132 12.26 19.6 ## 133 11.12 23.0 ## 134 15.03 18.4 ## 135 17.31 15.6 ## 136 16.96 19.4 ## 137 16.90 17.4 ## 138 14.59 17.1 ## 139 21.32 13.3 ## 140 18.46 17.8 ## 141 24.16 8.3 ## 142 34.41 8.8 ## 143 26.82 13.4 ## 144 26.42 15.6 ## 145 29.29 11.8 ## 146 27.80 13.8 ## 147 16.65 15.6 ## 148 29.53 14.6 ## 149 13.44 17.8 ## 150 21.45 15.4 ## 151 14.10 21.5 ## 152 13.28 19.6 ## 153 12.12 15.3 ## 154 15.79 19.4 ## 155 15.12 17.0 ## 156 15.02 15.6 ## 157 16.14 13.1 ## 158 4.59 41.3 ## 159 6.43 36.2 ## 160 7.39 23.3 ## 161 5.50 27.0 ## 162 1.73 50.0 ## 163 1.92 50.0 ## 164 3.32 50.0 ## 165 11.64 22.7 ## 166 9.81 25.0 ## 167 3.70 50.0 ## 168 12.14 23.8 ## 169 11.10 23.8 ## 170 11.32 22.3 ## 171 14.43 17.4 ## 172 12.03 19.1 ## 173 10.59 23.1 ## 174 9.04 23.6 ## 175 9.64 22.6 ## 176 5.33 29.4 ## 177 10.11 22.9 ## 178 6.29 24.6 ## 179 6.92 33.2 ## 180 5.04 37.2 ## 181 7.56 39.8 ## 182 7.19 36.2 ## 183 4.82 31.6 ## 184 5.68 32.5 ## 185 13.98 26.4 ## 186 13.15 29.6 ## 187 4.45 50.0 ## 188 6.68 32.0 ## 189 4.56 29.8 ## 190 5.39 34.9 ## 191 5.10 37.0 ## 192 4.69 30.5 ## 193 2.87 36.4 ## 194 5.03 31.1 ## 195 4.38 29.1 ## 196 2.97 50.0 ## 197 4.08 33.3 ## 198 8.61 30.3 ## 199 4.85 34.6 ## 200 3.56 34.9 ## 201 4.45 32.9 ## 202 7.43 24.1 ## 203 3.11 42.3 ## 204 3.81 48.5 ## 205 2.88 50.0 ## 206 10.87 22.6 ## 207 10.97 24.4 ## 208 18.06 17.4 ## 209 14.66 24.4 ## 210 23.09 20.0 ## 211 17.27 21.7 ## 212 21.14 19.3 ## 213 16.03 22.4 ## 214 9.38 26.5 ## 215 29.55 23.7 ## 216 9.47 25.0 ## 217 13.51 23.3 ## 218 9.69 28.7 ## 219 17.92 21.5 ## 220 10.50 23.0 ## 221 9.71 26.7 ## 222 21.46 21.7 ## 223 9.93 27.5 ## 224 7.60 30.1 ## 225 4.14 44.8 ## 226 4.63 50.0 ## 227 3.13 37.6 ## 228 6.36 31.6 ## 229 3.92 46.7 ## 230 3.76 31.5 ## 231 11.65 24.3 ## 232 3.26 31.7 ## 233 2.47 41.7 ## 234 3.11 44.0 ## 235 8.05 29.0 ## 236 10.88 24.0 ## 237 9.54 25.1 ## 238 4.73 31.5 ## 239 6.36 23.7 ## 240 9.97 23.3 ## 241 11.38 22.0 ## 242 12.40 20.1 ## 243 11.22 25.0 ## 244 5.19 23.7 ## 245 12.50 17.6 ## 246 18.46 18.5 ## 247 9.16 24.3 ## 248 10.15 20.5 ## 249 9.52 24.5 ## 250 6.56 26.2 ## 251 5.90 24.4 ## 252 3.59 24.8 ## 253 3.53 29.6 ## 254 3.54 42.8 ## 255 6.57 21.9 ## 256 9.25 20.9 ## 257 3.11 44.0 ## 258 5.12 50.0 ## 259 14.79 36.0 ## 260 6.90 32.0 ## 261 9.59 33.8 ## 262 7.26 31.0 ## 263 5.91 48.8 ## 264 14.15 31.0 ## 265 8.10 36.5 ## 266 10.45 22.8 ## 267 14.79 30.7 ## 268 7.44 48.8 ## 269 3.16 43.5 ## 270 13.65 20.7 ## 271 13.00 21.1 ## 272 6.59 25.2 ## 273 7.73 24.4 ## 274 6.58 35.2 ## 275 3.53 32.4 ## 276 2.98 32.0 ## 277 6.05 33.2 ## 278 4.16 33.1 ## 279 7.19 29.1 ## 280 4.85 35.1 ## 281 3.76 45.4 ## 282 4.59 35.4 ## 283 3.01 46.0 ## 284 3.16 50.0 ## 285 7.85 32.2 ## 286 8.23 22.0 ## 287 10.87 20.1 ## 288 7.14 23.2 ## 289 7.60 22.3 ## 290 9.51 24.8 ## 291 3.33 28.5 ## 292 3.56 37.3 ## 293 4.70 27.9 ## 294 8.58 23.9 ## 295 10.40 21.7 ## 296 6.27 28.6 ## 297 7.39 27.1 ## 298 9.81 20.3 ## 299 4.97 22.5 ## 300 4.74 29.0 ## 301 6.07 24.8 ## 302 9.50 22.0 ## 303 8.67 26.4 ## 304 4.86 33.1 ## 305 6.93 36.1 ## 306 8.93 28.4 ## 307 6.47 33.4 ## 308 7.53 28.2 ## 309 4.54 22.8 ## 310 9.97 20.3 ## 311 12.64 16.1 ## 312 5.98 22.1 ## 313 11.72 19.4 ## 314 7.90 21.6 ## 315 9.28 27.5 ## 316 11.50 16.2 ## 317 18.33 17.8 ## 318 15.94 19.8 ## 319 10.36 23.1 ## 320 12.73 21.0 ## 321 8.93 23.8 ## 322 6.87 23.1 ## 323 7.70 20.4 ## 324 11.74 18.5 ## 325 6.12 25.0 ## 326 5.08 24.6 ## 327 6.15 23.0 ## 328 12.79 22.2 ## 329 9.97 19.3 ## 330 6.53 22.6 ## 331 9.09 19.8 ## 332 12.43 17.1 ## 333 7.83 19.4 ## 334 5.68 22.2 ## 335 6.75 20.7 ## 336 7.14 21.1 ## 337 12.67 19.5 ## 338 10.56 18.5 ## 339 8.51 20.6 ## 340 9.74 19.0 ## 341 9.29 18.7 ## 342 5.49 32.7 ## 343 8.65 16.5 ## 344 7.18 23.9 ## 345 4.61 31.2 ## 346 10.53 17.5 ## 347 12.67 14.8 ## 348 6.36 23.1 ## 349 5.99 24.5 ## 350 5.89 26.6 ## 351 5.98 22.9 ## 352 5.49 24.1 ## 353 7.79 18.6 ## 354 4.50 30.1 ## 355 8.05 18.2 ## 356 5.57 20.6 ## 357 17.60 17.8 ## 358 13.27 21.7 ## 359 11.48 22.7 ## 360 12.67 22.6 ## 361 7.79 25.0 ## 362 14.19 19.9 ## 363 10.19 20.8 ## 364 14.64 16.8 ## 365 7.43 21.9 ## 366 7.12 27.5 ## 367 14.00 21.9 ## 368 13.33 23.1 ## 369 3.26 50.0 ## 370 3.73 50.0 ## 371 2.96 50.0 ## 372 9.53 50.0 ## 373 8.88 50.0 ## 374 34.77 13.8 ## 375 37.97 13.8 ## 376 13.44 15.0 ## 377 23.24 13.9 ## 378 21.24 18.7 ## 379 23.69 13.1 ## 380 21.78 19.4 ## 381 17.21 10.4 ## 382 21.08 10.9 ## 383 23.60 11.3 ## 384 24.56 12.3 ## 385 30.63 8.8 ## 386 30.81 7.2 ## 387 28.28 10.5 ## 388 31.99 13.8 ## 389 30.62 10.2 ## 390 20.85 11.5 ## 391 17.11 15.1 ## 392 18.76 23.2 ## 393 25.68 9.7 ## 394 15.17 13.8 ## 395 16.35 12.7 ## 396 17.12 21.4 ## 397 19.37 12.5 ## 398 19.92 8.5 ## 399 30.59 5.0 ## 400 29.97 6.3 ## 401 26.77 8.3 ## 402 20.32 7.2 ## 403 20.31 12.1 ## 404 19.77 8.3 ## 405 27.38 8.5 ## 406 22.98 5.0 ## 407 23.34 11.9 ## 408 12.13 19.9 ## 409 26.40 17.2 ## 410 19.78 27.5 ## 411 10.11 15.0 ## 412 21.22 17.2 ## 413 34.37 17.9 ## 414 20.08 16.3 ## 415 36.98 7.0 ## 416 29.05 7.2 ## 417 25.79 7.5 ## 418 26.64 10.4 ## 419 20.62 8.8 ## 420 22.74 8.4 ## 421 15.02 16.7 ## 422 15.70 14.2 ## 423 14.10 20.8 ## 424 23.29 13.4 ## 425 34.02 11.7 ## 426 24.39 8.3 ## 427 15.69 10.2 ## 428 14.52 16.2 ## 429 21.52 11.0 ## 430 24.08 9.5 ## 431 17.64 14.5 ## 432 26.40 14.1 ## 433 12.03 16.1 ## 434 16.22 14.3 ## 435 15.17 17.1 ## 436 23.27 13.4 ## 437 18.05 9.6 ## 438 26.45 8.7 ## 439 34.02 8.4 ## 440 22.88 12.8 ## 441 22.11 10.5 ## 442 19.52 17.1 ## 443 16.59 18.4 ## 444 18.85 15.4 ## 445 23.79 10.8 ## 446 23.98 11.8 ## 447 17.79 14.9 ## 448 16.44 12.6 ## 449 18.13 14.1 ## 450 19.31 13.0 ## 451 24.10 13.4 ## 452 17.73 15.2 ## 453 17.27 16.1 ## 454 16.74 17.8 ## 455 18.71 19.4 ## 456 18.13 14.1 ## 457 19.01 12.7 ## 458 16.94 13.5 ## 459 16.23 14.9 ## 460 14.70 20.0 ## 461 16.42 16.4 ## 462 14.65 17.7 ## 463 13.99 19.5 ## 464 10.29 20.2 ## 465 13.22 21.4 ## 466 14.13 19.9 ## 467 17.15 19.0 ## 468 21.32 19.1 ## 469 18.13 19.1 ## 470 14.76 20.1 ## 471 16.29 19.9 ## 472 12.87 19.6 ## 473 14.36 23.2 ## 474 11.66 29.8 ## 475 18.14 13.8 ## 476 24.10 13.3 ## 477 18.68 16.7 ## 478 24.91 12.0 ## 479 18.03 14.6 ## 480 13.11 21.4 ## 481 10.74 23.0 ## 482 7.74 31.2 ## 483 7.01 25.0 ## 484 10.42 21.8 ## 485 13.34 20.6 ## 486 10.58 21.2 ## 487 14.98 19.1 ## 488 11.45 20.6 ## 489 18.06 15.2 ## 490 23.97 7.0 ## 491 29.68 8.1 ## 492 18.07 13.6 ## 493 13.35 20.1 ## 494 12.01 25.0 ## 495 13.59 24.5 ## 496 17.60 23.1 ## 497 21.14 19.7 ## 498 14.10 18.3 ## 499 12.92 21.2 ## 500 15.10 17.5 ## 501 14.33 16.8 ## 502 9.67 22.4 ## 503 9.08 20.6 ## 504 5.64 23.9 ## 505 6.48 22.0 ## 506 7.88 11.9 ``` --- ### MICE: Example ```r models <- with(mice_data, lm(medv~crim+age+tax+b+indus)) models ``` ``` ## call : ## with.mids(data = mice_data, expr = lm(medv ~ crim + age + tax + ## b + indus)) ## ## call1 : ## mice(data = boston_data_miss, m = 5, method = "pmm") ## ## nmis : ## crim zn indus chas nox rm age dis rad tax ## 26 20 28 20 25 24 25 26 30 17 ## ptratio b lstat medv ## 27 26 28 32 ## ## analyses : ## [[1]] ## ## Call: ## lm(formula = medv ~ crim + age + tax + b + indus) ## ## Coefficients: ## (Intercept) crim age tax b indus ## 26.294164 -0.151420 -0.030347 -0.004756 0.012527 -0.325284 ## ## ## [[2]] ## ## Call: ## lm(formula = medv ~ crim + age + tax + b + indus) ## ## Coefficients: ## (Intercept) crim age tax b indus ## 26.171804 -0.145889 -0.028338 -0.003629 0.011702 -0.355552 ## ## ## [[3]] ## ## Call: ## lm(formula = medv ~ crim + age + tax + b + indus) ## ## Coefficients: ## (Intercept) crim age tax b indus ## 26.839004 -0.148056 -0.025409 -0.005474 0.011327 -0.340284 ## ## ## [[4]] ## ## Call: ## lm(formula = medv ~ crim + age + tax + b + indus) ## ## Coefficients: ## (Intercept) crim age tax b indus ## 26.288486 -0.146939 -0.023142 -0.004815 0.012466 -0.360530 ## ## ## [[5]] ## ## Call: ## lm(formula = medv ~ crim + age + tax + b + indus) ## ## Coefficients: ## (Intercept) crim age tax b indus ## 26.552440 -0.153941 -0.022469 -0.005288 0.011346 -0.338290 ``` --- ### MICE: Example ```r pool(models) ``` ``` ## Class: mipo m = 5 ## term m estimate ubar b t dfcom ## 1 (Intercept) 5 26.429179654 4.88588379958 0.0718538224712 4.97210838655 500 ## 2 crim 5 -0.149249051 0.00253627510 0.0000111915386 0.00254970495 500 ## 3 age 5 -0.025940910 0.00025947105 0.0000113323245 0.00027306984 500 ## 4 tax 5 -0.004792383 0.00001151295 0.0000005158807 0.00001213200 500 ## 5 b 5 0.011873759 0.00001835511 0.0000003459299 0.00001877022 500 ## 6 indus 5 -0.343988098 0.00692124028 0.0002008481207 0.00716225803 500 ## df riv lambda fmi ## 1 472.0090 0.017647695 0.017341655 0.021479085 ## 2 493.6925 0.005295106 0.005267216 0.009272643 ## 3 365.8683 0.052409659 0.049799675 0.054951650 ## 4 361.4170 0.053770494 0.051026760 0.056234932 ## 5 459.6281 0.022615829 0.022115665 0.026343183 ## 6 423.5481 0.034822913 0.033651084 0.038182103 ``` --- class: inverse, center, middle ## Relational Databases --- ## Relational Databases Relational databases are a commonly used model for data storage where the database is made up of various _tables_ which include both columns (attributes, features) and rows (observations, records). Importantly, in relational databases each row has a unique _key_ or identifier. Data is divided topically across various _tables_ where data is not redundant across or within tables. -- For example, imagine a dataset of U.S. cities. In this dataset, we might have information about each city's crime rate. We also might have state-level details such as state police funding, which would be common across cities within one state. In this case, our database would include two tables: 1. `cities` which includes a city id and all city-level attributes as well as an id connecting each city to a tate 2. `states` which includes a state id and all state-level attributes --- ## Relational Databases: Overview .pull-left[ <img src="applsci-10-08524-g001.png" width="90%" style="display: block; margin: auto;" /> ] .pull-right[ - Separate tables for each - Tables connect to one another through varying id's and keys - Data is not stored redundantly and is easy to access ] --- ## Relational Databases: SQL Features One of the most common ways for accessing these types of databases is to use __structured query language__, or SQL. SQL allows us to access relational database systems as well as create, remove, update, and insert various records. -- SQL is used often by data analysts and data scientists for working with structured data housed in a relational database management system. -- Most often beginners will work to "query" a database or data table to "retrieve" data or summaries of data using some set of criteria. --- ## Relational Databases: SQL Syntax SQL syntax typically begins with a _verb_ and includes a FROM clause which indicates the table to work with in the query. For example: ```sql SELECT * FROM table WHERE var = 'example' ORDER BY id ``` Note: There are a few different "dialects" of SQL (e.g. Oracle, PostgreSQL, MySQL) which vary slightly across platforms. -- Since we're only discussing this briefly, if you'd like to explore SQL outside of the R environment I recommend the following resources: - [Crash Course(s)](https://www.codecademy.com/learn/learn-sql) - [Online Coding](https://www.w3schools.com/sql/trysql.asp?filename=trysql_asc) - [Useful Documentation](https://sqlzoo.net/wiki/SQL_Tutorial) --- ## Relational Databases: Different Types of Commands Within SQL there are a number of "verbs" that you can use to see and change tables that exist within the connected database, e.g. `CREATE`, `SELECT`, `INSERT`, `UPDATE`, and `DELETE` The most common tool for beginners is the `SELECT` statement which allows you to "select" or access data from a given table (or set of tables). -- Using select, you can perform a lot of different tasks: - Access certain variable names or certain rows - Access aggregated statistics - Join tables together --- ## Relational Databases: Different Types of Commands <table class=" lightable-paper" style='font-family: "Arial Narrow", arial, helvetica, sans-serif; margin-left: auto; margin-right: auto;'> <thead> <tr> <th style="text-align:left;"> Function </th> <th style="text-align:left;"> R Tidyverse </th> <th style="text-align:left;"> SQL </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Select Variables </td> <td style="text-align:left;"> cities %>% <br> select(Name, Num) </td> <td style="text-align:left;"> SELECT Name, Num <br>FROM cities </td> </tr> <tr> <td style="text-align:left;"> Filter Data </td> <td style="text-align:left;"> cities %>% <br> filter(Num > .5) </td> <td style="text-align:left;"> SELECT * <br>FROM cities <br>WHERE Num > .5 </td> </tr> <tr> <td style="text-align:left;"> Aggregate Statistics </td> <td style="text-align:left;"> cities %>% <br> group_by(StateID) %>% <br> summarize(Med = median(Num)) </td> <td style="text-align:left;"> SELECT StateID, median([Num]) <br>FROM cities <br>GROUP BY StateID </td> </tr> <tr> <td style="text-align:left;"> Join Data Tables </td> <td style="text-align:left;"> cities %>% <br> left_join(states, by = 'StateID') </td> <td style="text-align:left;"> SELECT * <br>FROM cities <br>LEFT JOIN states <br>ON cities.StateID = states.StateID </td> </tr> </tbody> </table> --- ## Relational Databases: SQL and R The R package `sqldf` makes working with SQL code and R relatively seamless. The workhorse function `sqldf()` accepts common SQL syntax for working with dataframes in memory (_or_ for connecting to other databases). (Other useful R packages for connecting to databases include `DBI`, `odbc`, or `bigrquery` depending on the database set up though this is outside the scope of tonight's discussion.) -- For example: ```r library(sqldf) sqldf("SELECT * FROM life_expect WHERE Continent = 'Asia' ") ``` -- ``` ## Population Continent life_expectancy GDP_per_capita ## 1 34414000 Asia 63.377 1928 ## 2 2926000 Asia 74.467 9552 ## 3 9623000 Asia 72.266 16045 ## 4 1372000 Asia 76.762 39197 ## 5 156256000 Asia 71.514 3068 ## 6 15521000 Asia 68.637 3139 ## 7 1406848000 Asia 75.928 12002 ## 8 4024000 Asia 72.973 10198 ## 9 7186000 Asia 84.043 46504 ## 10 1310151936 Asia 68.607 5639 ## 11 258383008 Asia 70.768 10099 ## 12 78492000 Asia 75.796 15039 ## 13 35572000 Asia 69.929 13087 ## 14 7978000 Asia 82.340 31729 ## 15 127985000 Asia 83.879 36030 ## 16 9267000 Asia 74.078 11738 ## 17 17572000 Asia 71.319 23408 ## 18 3836000 Asia 75.130 68127 ## 19 5959000 Asia 70.876 5910 ## 20 6741000 Asia 66.546 6001 ## 21 6533000 Asia 78.768 12665 ## 22 30271000 Asia 75.461 22075 ## 23 2998000 Asia 69.111 11139 ## 24 52681000 Asia 65.810 5834 ## 25 27015000 Asia 69.515 2607 ## 26 25184000 Asia 71.481 1720 ## 27 4267000 Asia 76.887 37096 ## 28 199427008 Asia 66.577 5056 ## 29 4529000 Asia 73.442 4422 ## 30 102113000 Asia 70.644 6870 ## 31 2566000 Asia 79.758 139542 ## 32 31718000 Asia 74.651 47737 ## 33 5592000 Asia 82.877 67110 ## 34 50823000 Asia 82.100 35316 ## 35 20908000 Asia 76.316 10734 ## 36 17997000 Asia 69.908 3509 ## 37 23557000 Asia 79.743 41805 ## 38 8454000 Asia 70.137 3365 ## 39 68715000 Asia 76.091 13938 ## 40 78529000 Asia 76.532 20808 ## 41 5565000 Asia 67.704 21262 ## 42 9263000 Asia 77.285 69237 ## 43 30930000 Asia 70.928 9107 ## 44 92677000 Asia 75.110 5733 ## 45 26498000 Asia 66.085 2496 ``` --- ## Relational Databases: SQL and R ```r sqldf("SELECT Continent, median([life_expectancy]) as cont_med FROM life_expect GROUP BY Continent ") ``` -- ``` ## Continent cont_med ## 1 <NA> 71.4160 ## 2 Africa 62.1940 ## 3 Asia 73.4420 ## 4 Europe 80.3500 ## 5 North America 74.5490 ## 6 Oceania 82.2535 ## 7 South America 75.9300 ``` --- ## Next Week's Readings __April 19:__ Fun R Packages Assorted readings